www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Koeffizientenvergleich
Koeffizientenvergleich < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizientenvergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Sa 09.03.2013
Autor: Mathe-Andi

Hallo,

ich möchte die Koeffizienten a und b mittels Koeffizientenvergleich bestimmen:

[mm] 4a+b(\bruch{1}{5}-x)=5+3x [/mm]

Darf ich das so machen?:

4a=5

[mm] b(\bruch{1}{5}-x)=3x [/mm]

Dann wäre [mm] a=\bruch{5}{4} [/mm]

und [mm] b=\bruch{3x}{\bruch{1}{5}-x} [/mm]

Das x bekomme ich aber nicht weg. Habe es schon mit Polynomdivision versucht. Man müsste dann nur noch die Bedingung [mm] x\not=\bruch{1}{5} [/mm] angeben.

Darf ich das so machen?


Gruß, Andreas


        
Bezug
Koeffizientenvergleich: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Sa 09.03.2013
Autor: Diophant

Hallo,

> Hallo,
>
> ich möchte die Koeffizienten a und b mittels
> Koeffizientenvergleich bestimmen:
>
> [mm]4a+b(\bruch{1}{5}-x)=5+3x[/mm]
>
> Darf ich das so machen?:
>
> 4a=5

Nein, so geht es sicherlich nicht.

Multipliziere die Klammer aus, das ergibt dann eine Bedingung für b. Den von x unabhängigen Teil kannst du dann mit 5 gleichsetzen und so a bestimmen.


Gruß, Diophant



Bezug
                
Bezug
Koeffizientenvergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Sa 09.03.2013
Autor: Mathe-Andi

Ok, also wird  getrennt nach "von x (un-)abhängiger Teil"?

Ist das jetzt richtig?

[mm] 4a+\bruch{1}{5}b-bx=5+3x [/mm]

(I) [mm] 4a+\bruch{1}{5}b=5 [/mm]

(II) -bx=3x; b=-3

(II) in (I): [mm] a=\bruch{7}{5} [/mm]





Bezug
                        
Bezug
Koeffizientenvergleich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Sa 09.03.2013
Autor: Diophant

Hallo,

> Ok, also wird getrennt nach "von x (un-)abhängiger
> Teil"?

Genau: nur so macht es Sinn.

>
> Ist das jetzt richtig?
>
> [mm]4a+\bruch{1}{5}b-bx=5+3x[/mm]
>
> (I) [mm]4a+\bruch{1}{5}b=5[/mm]
>
> (II) -bx=3x; b=-3
>
> (II) in (I): [mm]a=\bruch{7}{5}[/mm]
>

Ja, alles richtig. [ok]


Gruß, Diophant


Bezug
                                
Bezug
Koeffizientenvergleich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Sa 09.03.2013
Autor: Mathe-Andi

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]