www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kniffelige Aufgabe(Integral)
Kniffelige Aufgabe(Integral) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kniffelige Aufgabe(Integral): Keinen Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:29 Di 21.11.2006
Autor: Blaub33r3

Aufgabe
Zeigen Sie, dass der Graph der Funktion f mit [mm] f(x)=x+e^{-x+2} [/mm] mit den Geraden mit der Gleichungen y=x; x=5; x=10 eine Fläche einschließt, deren Inhalt kleiner als 0,05 ist.

Hi Leute!!

Ja hm^^ kann mir jemand sagen wie ich das mache^^?
Integral gebildet hab ich!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mfg b33r3

        
Bezug
Kniffelige Aufgabe(Integral): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 21.11.2006
Autor: Manabago

Bist du sicher, dass du die richtige Angabe abgeschrieben hast. Hab das nämlich grad ausgerechnet und die Fläche beträgt 7,21... Flächeneinheiten. Also?

Bezug
        
Bezug
Kniffelige Aufgabe(Integral): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Di 21.11.2006
Autor: Blaub33r3

Jep, habe ich richtig abgeschrieben!^^


Bezug
                
Bezug
Kniffelige Aufgabe(Integral): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Di 21.11.2006
Autor: Manabago

Habe die falsche Fläche ausgerechnet, sorry!
Also das Integral von f(x) ist ja [mm] \bruch{x^2}{2} [/mm] - e^(2-x). So jetzt zeichnest du dir f(x) und die gegebenen Geraden einmal auf (am bestem mit Computer, dann siehst du sofort das diese Fläche sehr klein sein muss). Die Fläche liegt also zwischen x=5 u. x=10 und der Geraden y=x. Also:

Um diese Fläche zu berechnen:
[mm] \integral_{5}^{10}{f(x) dx} [/mm] - [mm] \integral_{5}^{10}{x dx} [/mm] = ?

Kennst dich jetzt aus?

Lg

Bezug
                        
Bezug
Kniffelige Aufgabe(Integral): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Di 21.11.2006
Autor: Faithless

hallo!
das ganze geht auch einfacher

sage eingach g(x) = x und f(x)-g(x)=h(x)

und dann
[mm] \integral_{5}^{10}{h(x) dx} [/mm]
hat den vorteil dass du nur  [mm] e^{-x+2} [/mm] hast :)

Bezug
                        
Bezug
Kniffelige Aufgabe(Integral): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Di 21.11.2006
Autor: Blaub33r3

yo danke habs kapiert xD
gruss b33r3

Bezug
        
Bezug
Kniffelige Aufgabe(Integral): Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mi 22.11.2006
Autor: leduart

Hallo
Welches Intgral hast du gebildet? Hoffentlich das von x-f(x)
Die Grenzen (5 und10) einsetzen, fertig. (Nachsehen, ob es kleiner 0,05 ist)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]