www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Klausur LA1 1.2
Klausur LA1 1.2 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausur LA1 1.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:19 Sa 24.03.2007
Autor: Zerwas

Aufgabe
Sei V ein n-dimensionaler K-VR & seien $ [mm] U_1 [/mm] $ , $ [mm] U_2 [/mm] $ UnterVR von V. Welche der folgenden Aussagen ist immer richtig?
(a) $ [mm] dim(U_1\cap U_2) [/mm] $ < dim V
(b) $ [mm] dim(U_1\cap U_2) \le [/mm] $ dim $ [mm] U_1 [/mm] $
(c) $ [mm] dim(U_1\cap U_2) [/mm] $ = dim V => $ [mm] U_1\subset U_2 [/mm] $
(d) $ [mm] dim(U_1\cap U_2) [/mm] $ < dim $ [mm] U_1 [/mm] $ => $ [mm] U_2\subset U_1 [/mm] $

(a) falsch, wenn $ [mm] U_1=U_2=V [/mm] $
(b) richtig, $ [mm] dim(U_1\cap U_2) [/mm] $ = dim $ [mm] U_1 [/mm] $ genau dann wenn $ [mm] U_1\subset U_2 [/mm] $ ansonsten ist die Dimension des Schnitts immer kleiner.
(c) richtig, da [mm] U_1\cap U_2 [/mm] nur dimV haben kann, wenn [mm] U_1=U_2=V [/mm]
(d) falsch, kann man sich einfach graphisch vorstellen mit zwei Kreisen die sich schneiden

Ich wäre Dankbar wenn jmd diese Aufgaben Korrektur lesen könnte und mich auf Fehler Aufmerksam machen und bei den Aufgaben bei denen mir der Ansatz oder die Begründung fehlt auf die Sprünge hefen könnte.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Klausur LA1 1.2: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Sa 24.03.2007
Autor: angela.h.b.


> Sei V ein n-dimensionaler K-VR & seien [mm]U_1[/mm] , [mm]U_2[/mm] UnterVR
> von V. Welche der folgenden Aussagen ist immer richtig?
>  (a) [mm]dim(U_1\cap U_2)[/mm] < dim V
>  (b) [mm]dim(U_1\cap U_2) \le[/mm] dim [mm]U_1[/mm]
>  (c) [mm]dim(U_1\cap U_2)[/mm] = dim V => [mm]U_1\subset U_2[/mm]

>  (d)
> [mm]dim(U_1\cap U_2)[/mm] < dim [mm]U_1[/mm] => [mm]U_2\subset U_1[/mm]
>  
> (a) falsch, wenn [mm]U_1=U_2=V[/mm]
>  (b) richtig, [mm]dim(U_1\cap U_2)[/mm] = dim [mm]U_1[/mm] genau dann wenn
> [mm]U_1\subset U_2[/mm] ansonsten ist die Dimension des Schnitts
> immer kleiner.
>  (c) falsch, wenn [mm]U_1\oplus U_2[/mm] =V
>  (d) falsch, kann man sich einfach graphisch vorstellen mit
> zwei Kreisen die sich schneiden

Hallo,

bei d) könnte man auch wieder die direkte Summe ins Feld führen.

Alles richtig.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]