www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Klassifizierung von Gruppen
Klassifizierung von Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassifizierung von Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Do 09.02.2006
Autor: kluh

Hallo Leute,

Gibt es eine Art "Schema f" zur Klassifizierung von Gruppen? Wie fange ich an, wenn ich Gruppen klassifizieren soll? Vielleicht könntet ihr mir das am Beispiel von |G|=6 und |G|=10 erklären. Wann brauche ich dabei das Semidirekte Produkt?

Schöne Grüße,
Stefan

        
Bezug
Klassifizierung von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 09.02.2006
Autor: DerHein

Also die Klassifikation aller endlichen Gruppen ist wohl aussichtslos...
da gibt es viel zu viele. Die einfachen (d.h keine nichttrivialen Normalteiler)
sind Ende letzten Jahrhunderts klassifiziert worden... das sind mehrere Tausend Seiten Beweis... verteilt auf Duzende Artikel. Eine vollständige Liste findet sich bei Cohen: Atlas of finite Groups.
Naja für Ordung < 20, sollte eine vollständige Klassifikation jedoch kein unlösbares Problem sein.
Wenn man anfängt sollte man sich zuerst mal Überblick über die möglichen Ordnungen von Elementen verschaffen... Satz von Lagrange. Gibt es z.B. ein Element dessen Ordnung = Gruppenordnung ist weiß man ja das die Gruppe Zyklisch ist... naja dann kann man sich Produkte anschauen und mögliche Kanidaten für die Ordnung des Produkts besorgen und sich so langsam durchhangel...
Man weiß z.B. auch, dass es immer Sylowuntergruppen gibt zu jedem Primteiler der Ordnung.
Hast du z.B. einen Normalteiler identifiziert und eine transversale Untergruppe gefunden so zerfällt deine Gruppe in ein Semidikrektes Produkt... allerdings bin ich da auch kein Experte. Wie immer ist Wikipedia bei sowas immer recht hilfreich... alleine mal ein paar Kanidaten zu kennen: Diedergruppen, [mm] A_n, S_n, [/mm] abelsche Gruppen,... siehe auch
http://mathworld.wolfram.com/FiniteGroup.html

mfg Heinrich


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]