www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Kinematik - Allgemeine Bewegun
Kinematik - Allgemeine Bewegun < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kinematik - Allgemeine Bewegun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Fr 07.11.2008
Autor: molekular

Aufgabe
Ein Schienenfahrzeug fährt mit konstanter Geschwindigkeit [mm]v_0=120 km/h.[/mm]
Nach Abschalten des Triebwerkes zur Zeit [mm]t_0=0[/mm] wird das Fahrzeug im wesentlichen durch den Luftwiderstand gebremst. Die Beschleunigung ist geschwindigkeitsabhängig:

[mm] a=-Kv^{2} [/mm]  

[mm] K=3,75*10^{-4} [/mm]

a) Nach welcher Zeit [mm] t_1 [/mm] ist die Geschwindigkeit auf
[mm]v_1=60 km/h[/mm] abgesunken?

b) Welche Strecke [mm] s_1 [/mm] wurde in der Zeit [mm] t_1 [/mm] zurückgelegt?

hallo zusammen...

tue mich bei dieser aufgabe schwer, weil mir der ansatz zur berechnung des zeitpunktes [mm] t_1 [/mm] nicht einfällt. ich habe ein problem damit, das a von v abhängt, sonst würde mich wohl die integration von a zu v führen und ich könnte einfach nach t auflösen aber wie kann ich denn a(v) nach t integrieren???
wäre toll wenn mir jemand auf die sprünge helfen könnte...

        
Bezug
Kinematik - Allgemeine Bewegun: Differenzialbeziehung
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 07.11.2008
Autor: Loddar

Hallo molekular!


Verwende hier die Beziehung zwischen Beschleunigung a und Geschwindigkeit v:
$$a(t) \ = \ [mm] \dot{v}(t)$$ [/mm]
Die Beschleunigungsfunktion ist also die Ableitung der Geschwindigkeitsfunktion.

Damit ergibt sich folgende DGL:
[mm] $$\dot{v} [/mm] \ = \ [mm] K*v^2$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Kinematik - Allgemeine Bewegun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Fr 07.11.2008
Autor: molekular

vielen dank für deine schnelle antwort loddar

das war auch meine überlegung aber wo ist denn da mein denkfehler, denn:

[mm] v(t)=at+v_0=(-Kv_{m}^2)t+v_0 [/mm]

ich dachte mir das so:

[mm]a=\bruch{\Delta v}{\Delta t}=\bruch{60-120}{t_1-0}[/mm]

und nu?

Bezug
                        
Bezug
Kinematik - Allgemeine Bewegun: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:09 Fr 07.11.2008
Autor: Loddar

Hallo molekular!


> [mm]v(t)=at+v_0=(-Kv_{m}^2)t+v_0[/mm]

Der erste Teil gilt ja nur für konstante $a_$ .

Bestimme Dir das $v(t)_$ anhand der o.g. DGL:
[mm] $$\dot{v}(t) [/mm] \ = \ [mm] -K*v^2(t)$$ [/mm]
[mm] $$\bruch{1}{v(t)} [/mm] \ = \ K*t+c$$

Und dann $v(0) \ = \ 120 \ [mm] \text{km/h} [/mm] \ = \ ... \ [mm] \text{m/s}$ [/mm] einsetzen, um $c_$ zu ermitteln.


Gruß
Loddar


Bezug
                                
Bezug
Kinematik - Allgemeine Bewegun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Fr 07.11.2008
Autor: molekular

ohman sorry aber ich versteh nur noch bahnhof

wie kommst du auf

$ [mm] \bruch{1}{v(t)} [/mm] \ = \ [mm] K\cdot{}t+c [/mm] $

gruß



Bezug
                                        
Bezug
Kinematik - Allgemeine Bewegun: DGL auflösen
Status: (Antwort) fertig Status 
Datum: 18:50 Fr 07.11.2008
Autor: Loddar

Hallo molekular!


$$ [mm] \dot{v}(t) [/mm] \ = \ [mm] -K\cdot{}v^2(t) [/mm] $$
$$ [mm] \bruch{dv}{dt} [/mm] \ = \ [mm] -K\cdot{}v^2(t) [/mm] $$
$$ [mm] -\bruch{dv}{v^2(t)} [/mm] \ = \ [mm] K\cdot{}dt [/mm] $$
$$ [mm] -\blue{\integral}{v^{-2} \ dv} [/mm] \ = \ [mm] \blue{\integral}{K \ dt} [/mm] $$
Und die Integration liefert dann o.g. Ergebnis.


Gruß
Loddar


Bezug
                                                
Bezug
Kinematik - Allgemeine Bewegun: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Fr 07.11.2008
Autor: molekular


ahja ok vielen dank für deine hilfe loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]