www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kettenbrüche
Kettenbrüche < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenbrüche: negative Darstellung
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 30.06.2008
Autor: Ole-Wahn

Aufgabe
Sei [mm] $\alpha=[a_1,a_2,a_3,...]\notin \IQ$.Zeige: [/mm]

1) [mm] $-\alpha=[-a_1,-1,1,a_2-1,a_3,a_4,...]$ [/mm] falls [mm] $a_2>1$ [/mm]

[mm] 2)$-\alpha=[-a_1-1,a_3+1,a_4,a_5,...]$ [/mm] fals [mm] $a_2=1$. [/mm]


Hallo,

irgendwie ist mir die Aufgabe ein Rätsel- ist die Kettenbruchdarstellung nicht eindeutig?

[mm] $-\alpha$ [/mm] ist ja in jedem Fall wie folgt darzustellen:

[mm] $-\alpha=-[a_1,a2,...]=-a_1 [/mm] - [mm] \frac{1}{a_2+\frac{1}{a_3+...}}=-a_1 +\frac{1}{-a_2+\frac{1}{-a_3+...}}=[-a_1,-a_2,...]$ [/mm]

Wie kann ich jetzt bitte an diesem unendlichen Kettenbruch Umformungen vornehmen, sodass ich auf die gewünschte Darstellung komme? Und warum spielt [mm] $a_2$ [/mm] da so eine Sonderrolle?

lg,

Ole

        
Bezug
Kettenbrüche: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 30.06.2008
Autor: felixf

Hallo Ole

> Sei [mm]\alpha=[a_1,a_2,a_3,...]\notin \IQ[/mm].Zeige:
>  
> 1) [mm]-\alpha=[-a_1,-1,1,a_2-1,a_3,a_4,...][/mm] falls [mm]a_2>1[/mm]

Meinst du nicht eher [mm] $[-a_1-1,1,a_2-1,a_3,a_$,...]$? [/mm]

> 2)[mm]-\alpha=[-a_1-1,a_3+1,a_4,a_5,...][/mm] fals [mm]a_2=1[/mm].
>  
>
> Hallo,
>  
> irgendwie ist mir die Aufgabe ein Rätsel- ist die
> Kettenbruchdarstellung nicht eindeutig?

Doch, ist sie.

> [mm]-\alpha[/mm] ist ja in jedem Fall wie folgt darzustellen:
>  
> [mm]-\alpha=-[a_1,a2,...]=-a_1 - \frac{1}{a_2+\frac{1}{a_3+...}}=-a_1 +\frac{1}{-a_2+\frac{1}{-a_3+...}}=[-a_1,-a_2,...][/mm]

Nein, das ist keine Kettenbruchentwicklung, da die Koeffizienten ab dem ersten alle [mm] $\ge [/mm] 1$ sein sollen: bei dir sind sie [mm] $\le [/mm] -1$.

> Wie kann ich jetzt bitte an diesem unendlichen Kettenbruch
> Umformungen vornehmen, sodass ich auf die gewünschte
> Darstellung komme?

Es ist doch [mm] $\alpha [/mm] = [mm] a_1 [/mm] + [mm] \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\beta}}}$, [/mm] wobei [mm] $\beta [/mm] = [mm] [a_4, a_5, \dots]$ [/mm] ist.

Du willst also im Fall [mm] $a_2 [/mm] > 1$ zeigen, dass [mm] $-\alpha [/mm] = [mm] -a_1 [/mm] - 1 + [mm] \frac{1}{1 + \frac{1}{a_2 - 1 + \frac{1}{a_3 + \frac{1}{\beta}}}}$. [/mm] Und im Fall [mm] $a_2 [/mm] = 1$, dass [mm] $-\alpha [/mm] = [mm] -a_1 [/mm] - 1 + [mm] \frac{1}{a_3 + 1 + \frac{1}{\beta}}$ [/mm] ist.

Du musst also einfach nachrechnen, dass dies so stimmt; sprich: setz das [mm] $\alpha$ [/mm] ein!

> Und warum spielt [mm]a_2[/mm] da so eine Sonderrolle?

Weil wenn das gleich $1$ ist, dann ist [mm] $a_2 [/mm] - 1 = 0$, und das ist kein gueltiger Koeffizient mehr. Und da sich $[0, x, y, ...]$ wie [mm] $\frac{1}{[x, y, ...]}$ [/mm] verhaelt muss man dann halt etwas tricksen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]