www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kellogg's Problem
Kellogg's Problem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kellogg's Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Mo 22.03.2010
Autor: Memento

Es ist gestern die Frage aufgetaucht:

In einer Schachtel ist jeweils eines von 4 verschiedenen Spielzeugen.
Unter der Annahme das alle 4 gleich haefig sind, wie viele Schachteln muss ich offnen damit ich mit einer >= 95 % Wahrscheinlichkeit, alle 4 verschiednen Spielzeuge habe.

Irgendwie steh ich auf der Leitung, kann mir jemand den Loesungsweg erklaeren?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kellogg's Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:50 Fr 26.03.2010
Autor: reverend

Hallo Memento,

das geht ja noch "zu Fuß", will heißen: mit Mitteln der Mittelstufe.

Wenn Du n Schachteln öffnest, wie hoch ist dann die Wahrscheinlichkeit, dass du nur drei der vier Spielzeuge findest? Mit steigendem n fällt diese Wahrscheinlichkeit. Ihr Komplement ist die gesuchte Größe. Wann wird sie <5%?

Und wie geht in die Rechnung ein, dass es ja egal ist, welches der vier Spielzeuge in der Probe nicht vorkommt?

Rechne doch mal vor, dann ist leichter zu sehen, wo das Problem liegt. Wirklich schwierig ist es hier noch nicht, scheint mir. Aber ich habe ehrlich gesagt auch gar nicht selbst gerechnet...

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]