Keine Stammfunktion? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:11 So 18.01.2009 | Autor: | dmy |
Aufgabe | Die Funktion
f:[-1,1] [mm] \rightarrow \mathbb{R}, x\rightarrow [/mm] f(x) := [mm] f(n)=\begin{cases} -1, & \mbox{für } x <0 \\ 1, & \mbox{für } x \ge 0 \end{cases}
[/mm]
ist Riemann-integrierbar und besitzt keine Stammfunktion. |
Dass die Funktion Riemann-Integierbar ist, ist leicht gezeigt da es sich ja um eine Treppenfunktion handelt...
Nun gibt es aber meiner Meinung nach durchaus eine Stammfunktion. Diese muss ja einfach nur im Bereich [-1,0[ eine Steigung von -1 und im Bereich [0,1] eine Steigung von 1 haben. Also würde sich anbieten: F(x) = |x|.
Die Funktion sollte die geforderten Eigenschaften haben.
Es wäre nett wenn mir jemand sagen könnte warum hier F KEINE Stammfunktion von f ist und einen Tipp geben könnte wie ich zeigen kann dass es auch keine andere Stammfunktion von f geben kann.
Ich habe die Frage auf keiner anderen Internetseite gestellt!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:15 So 18.01.2009 | Autor: | abakus |
> Die Funktion
>
> f:[-1,1] [mm]\rightarrow \mathbb{R}, x\rightarrow[/mm] f(x) :=
> [mm]f(n)=\begin{cases} -1, & \mbox{für } x <0 \\ 1, & \mbox{für } x \ge 0 \end{cases}[/mm]
>
> ist Riemann-integrierbar und besitzt keine Stammfunktion.
> Dass die Funktion Riemann-Integierbar ist, ist leicht
> gezeigt da es sich ja um eine Treppenfunktion handelt...
>
> Nun gibt es aber meiner Meinung nach durchaus eine
> Stammfunktion. Diese muss ja einfach nur im Bereich [-1,0[
> eine Steigung von -1 und im Bereich [0,1] eine Steigung von
> 1 haben. Also würde sich anbieten: F(x) = |x|.
> Die Funktion sollte die geforderten Eigenschaften haben.
>
Hallo,
deine Funktion F(x)=|x| hat (als erhoffte Stammfunktion von f) ein kleines Problem an der Stelle x=0...
Gruß Abakus
> Es wäre nett wenn mir jemand sagen könnte warum hier F
> KEINE Stammfunktion von f ist und einen Tipp geben könnte
> wie ich zeigen kann dass es auch keine andere Stammfunktion
> von f geben kann.
>
> Ich habe die Frage auf keiner anderen Internetseite
> gestellt!
|
|
|
|