www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Kehrmatrix
Kehrmatrix < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kehrmatrix: Lösung LGS mit Kehrmatrix
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 08.01.2005
Autor: Tiinnii

HI@all!
Ich habe hier eine Aufgabe in der ich mithilfe der Kehrmatrix die Unbekannten xi bestimmen soll!!! Wie man die Kehrmatrix berechnet weiß ich, nur wie bestimme ich die Unbekannten???


[mm] A=\pmat{ 26,01 & 0 & 5,10 \\ 0 & 26,01 & 5,00 \\ 5,10 & 5,00 & 49,00 } [/mm]
Die rechte Seite lautet:

[mm] r=\pmat{ 1 \\ 0 \\ 0 } [/mm]
Hoffenlich kann mir jemand helfen!!!
mfg
tiinnii

        
Bezug
Kehrmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Sa 08.01.2005
Autor: e.kandrai

Zu lösen ist ja das LGS [mm]A \cdot \vec{x}\ =\ \vex{b}[/mm].

Die Gleichung kannst du von links mit [mm]A^{-1}[/mm] durchmultiplizieren, und das ergibt dann: [mm]A^{-1} \cdot A \cdot \vec{x}\ =\ A^{-1} \cdot \vec{b}[/mm]  [mm]\gdw[/mm]  [mm]\vec{x}=A^{-1} \cdot \vec{b}[/mm].

Also musst du nur die inverse Matrix mit [mm]\vec{b}[/mm] multiplizieren, und hast direkt deinen Lösungsvektor [mm]\vec{x}[/mm] dastehen.

Bezug
                
Bezug
Kehrmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 08.01.2005
Autor: Tiinnii

Danke schonmal für die Schnelle Antwort!!!
Kannst du mir vielleicht noch kurz erklären wie ich auf die Lösung komme,wenn ich eine andere rechte Seite, z.b. 5;4;2,  habe???
Wenn ich dann b*a^-1 nehme bekomme ich ja wieder eine Matrix???
mfg
Tinnii

Bezug
                        
Bezug
Kehrmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Sa 08.01.2005
Autor: e.kandrai

Du musst auf der rechten Seite [mm]A^{-1} \cdot \vec{b}[/mm] rechnen, andersrum geht die Multiplikation gar nicht (die Matrizenmultiplikation ist nicht kommutativ, d.h. in der Reihenfolge nicht vertauschbar).
Und nochwas: ein Vektor ist ein "Spezialfall" einer Matrix, nämlich eine [mm](n \times 1)-[/mm]Matrix (mit n Zeilen und 1 Spalte).
Die Multiplikation von Matrix mal Vektor ergibt wieder einen Vektor (falls die Spaltenzahl von Matrix = Zeilenzahl von Vektor ist, sonst kannst es gar nicht multiplizieren).
Und mein beschriebenes Verfahren geht für jede rechte Seite [mm]\vec{b}[/mm] der Gleichung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]