www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Kegelschnitt
Kegelschnitt < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelschnitt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:59 Do 27.06.2013
Autor: Rated-R

Aufgabe
Transformieren Sie den Kegelschnitt auf Normalform
[mm] x_1^2+2*x_1*x_2+x_2^2+x_1+2*x_2=1 [/mm]


Hallo,

irgendwo mache ich Fehler bei der Aufgabe also zunächst
bestimme ich eine Matrix [mm] A=\pmat{ 1 & 1 \\1 & 1 } [/mm] und einen Vektor [mm] a=\vektor{1 \\ 2} [/mm]

so, dass [mm] x^T.A.x+x^T.a=1 [/mm] der Kegelschnitt ist

[mm] D=T^T.A.T [/mm]
bestimmung von T:

Eigenwerte von A sind 0 und 2
Eigenvektor zu 0 ist [mm] \vektor{-1 \\ 1} [/mm]
Eigenvektor zu 2 [mm] ist\vektor{1 \\ 1} [/mm]
Eigenvektoren noch normieren so gilt:

[mm] T=1/\sqrt(2)*\pmat{ 1 & 1 \\ -1 & 1 } [/mm]

x=T.x'

jetzt gilt: [mm] x'^T.D.x'+x'^T.T^T.a=1 [/mm]

stimmt das?

so hab ich dann nach langer Rechung raus(+mit Maple nachgerechnet)
[mm] 2*x1'^2+(3/2)*\sqrt(2)*x'1+(1/2)*\sqrt(2)*x2' [/mm] = 1

aber eigentlich sollte eine Parabel rauskommen also der form [mm] 2*x1^2+(Faktor)*x1=1 [/mm]

Ich weiß leider nicht was ich falsch gemacht habe, könnt ihr kurz schauen ob das "theoretisch" passt?

Danke!
gruß Tom

        
Bezug
Kegelschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Do 27.06.2013
Autor: Richie1401

Hallo,

> Transformieren Sie den Kegelschnitt auf Normalform
>  [mm]x_1^2+2*x_1*x_2+x_2^2+2*x_2=1[/mm]
>  Hallo,
>  
> irgendwo mache ich Fehler bei der Aufgabe also zunächst
>  bestimme ich eine Matrix [mm]A=\pmat{ 1 & 1 \\1 & 1 }[/mm] und
> einen Vektor [mm]a=\vektor{1 \\ 2}[/mm]

Wie kommst du denn auf den Vektor a? Der ist so nicht ok.

>  
> so, dass [mm]x^T.A.x+x^T.a=1[/mm] der Kegelschnitt ist
>  
> [mm]D=T^T.A.T[/mm]
>  bestimmung von T:
>  
> Eigenwerte von A sind 0 und 2
>  Eigenvektor zu 0 ist [mm]\vektor{-1 \\ 1}[/mm]
>  Eigenvektor zu 2
> [mm]ist\vektor{1 \\ 1}[/mm]
>  Eigenvektoren noch normieren so gilt:
>  
> [mm]T=1/\sqrt(2)*\pmat{ 1 & 1 \\ -1 & 1 }[/mm]
>  
> x=T.x'
>  
> jetzt gilt: [mm]x'^T.D.x'+x'^T.T^T.a=1[/mm]
>  
> stimmt das?
>  
> so hab ich dann nach langer Rechung raus(+mit Maple
> nachgerechnet)
>  [mm]2*x1'^2+(3/2)*\sqrt(2)*x'1+(1/2)*\sqrt(2)*x2'[/mm] = 1
>  
> aber eigentlich sollte eine Parabel rauskommen also der
> form [mm]2*x1^2+(Faktor)*x1=1[/mm]
>  
> Ich weiß leider nicht was ich falsch gemacht habe, könnt
> ihr kurz schauen ob das "theoretisch" passt?
>  
> Danke!
>  gruß Tom


Bezug
                
Bezug
Kegelschnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Do 27.06.2013
Autor: Rated-R

Danke für deine Hilfe ich habe leider den kegelschnitt falsch angegeben
[mm] x_1^2+2*x_1*x_2+x_2^2+x_1+2x_2=1 [/mm]

so jetzt passt die Matrix A und der Vektor a.

Entschuldigung!

gruß Tom


Bezug
        
Bezug
Kegelschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Fr 28.06.2013
Autor: angela.h.b.


> Transformieren Sie den Kegelschnitt auf Normalform
> [mm]x_1^2+2*x_1*x_2+x_2^2+x_1+2*x_2=1[/mm]

>

> Hallo,

>

> irgendwo mache ich Fehler bei der Aufgabe also zunächst
> bestimme ich eine Matrix [mm]A=\pmat{ 1 & 1 \\1 & 1 }[/mm] und
> einen Vektor [mm]a=\vektor{1 \\ 2}[/mm]

>

> so, dass [mm]x^T.A.x+x^T.a=1[/mm] der Kegelschnitt ist

>

> [mm]D=T^T.A.T[/mm]
> bestimmung von T:

>

> Eigenwerte von A sind 0 und 2
> Eigenvektor zu 0 ist [mm]\vektor{-1 \\ 1}[/mm]
> Eigenvektor zu 2
> [mm]ist\vektor{1 \\ 1}[/mm]
> Eigenvektoren noch normieren so gilt:

>

> [mm]T=1/\sqrt(2)*\pmat{ 1 & 1 \\ -1 & 1 }[/mm]

>

> x=T.x'

>

> jetzt gilt: [mm]x'^T.D.x'+x'^T.T^T.a=1[/mm]

>

> stimmt das?

>

> so hab ich dann nach langer Rechung raus(+mit Maple
> nachgerechnet)
> [mm]2*x1'^2+(3/2)*\sqrt(2)*x'1+(1/2)*\sqrt(2)*x2'[/mm] = 1


Hallo,

schade, daß man Deine lange Rechnung nicht sieht.
Bei Deiner Wahl von T mußte doch [mm] D=\pmat{ 0 & 0 \\ 0 & 2 }  [/mm] sein,

also wäre der quadratische Term [mm] 2{x_2'}^2, [/mm] oder bin ich irgendwie durcheinander?

LG Angela


>

> aber eigentlich sollte eine Parabel rauskommen also der
> form [mm]2*x1^2+(Faktor)*x1=1[/mm]

>

> Ich weiß leider nicht was ich falsch gemacht habe, könnt
> ihr kurz schauen ob das "theoretisch" passt?

>

> Danke!
> gruß Tom


Bezug
                
Bezug
Kegelschnitt: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 07:14 Fr 28.06.2013
Autor: Richie1401

Hallo Angela,

> Hallo,
>  
> schade, daß man Deine lange Rechnung nicht sieht.

Das stimmt. Dort scheint nämlich der Fehler eventuell zu stecken.

>  Bei Deiner Wahl von T mußte doch [mm]D=\pmat{ 0 & 0 \\ 0 & 2 } [/mm]
> sein,
>  
> also wäre der quadratische Term [mm]2{x_2'}^2,[/mm] oder bin ich
> irgendwie durcheinander?

Das sehe ich genauso.

>  
> LG Angela
>  
>
> >
>  > aber eigentlich sollte eine Parabel rauskommen also der

>  > form [mm]2*x1^2+(Faktor)*x1=1[/mm]

>  >
>  > Ich weiß leider nicht was ich falsch gemacht habe,

> könnt
>  > ihr kurz schauen ob das "theoretisch" passt?

>  >
>  > Danke!

>  > gruß Tom


Bezug
                
Bezug
Kegelschnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Fr 28.06.2013
Autor: Rated-R

Vielen Dank für eure Antworten,

ich habe es mit maple nachgerechnet wollte nur nach theoretischen Fehlern fragen.

der plot mit wolframalpha zeigt das es sich bei den Kegelschnitt um eine Parabel handelt.

Wenn ich [mm] D=\pmat{ 0 & 0 \\ 0 & 2 } [/mm] setze bekomme ich [mm] 2*y2^2+(1/2)*\sqrt(2)*y1+(3/2)*\sqrt(2)*y2 [/mm] = 1

aber müsste nicht eine Gleichung der Form  [mm] 2*y2^2+0*y1+Faktor*y2 [/mm] = 1
auftreten?

Ich habe irgendwo gelesen das die Determinante(T)=+1 sein muss, deshalb habe ich die Spalten von T vertauscht.

also für einen Vektor x gilt
[mm] x^T.T^T.A.T.x+x^T.T^T.a=1 [/mm]
[mm] =>x^T.D.x+x^T.d=1 [/mm]
[mm] =>Eigenwert1*x_1^2+Eigenwert2*x_2^2+x^T.d=1 [/mm]

wobei jetzt der Vektor d die Form [mm] \vektor{0 \\ Wert} [/mm] oder  [mm] \vektor{Wert \\ 0} [/mm] hat und der Eigenwert2=0 ist, oder verstehe ich was falsch?

gruß Tom





Bezug
                        
Bezug
Kegelschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 06:06 Sa 29.06.2013
Autor: angela.h.b.


> Vielen Dank für eure Antworten,

>

Hallo,

> ich habe es mit maple nachgerechnet wollte nur nach
> theoretischen Fehlern fragen.

???


>

> der plot mit wolframalpha zeigt das es sich bei den
> Kegelschnitt um eine Parabel handelt.

>

> Wenn ich [mm]D=\pmat{ 0 & 0 \\ 0 & 2 }[/mm] setze

> bekomme ich
> [mm]2*y2^2+(1/2)*\sqrt(2)*y1+(3/2)*\sqrt(2)*y2[/mm] = 1

>

> aber müsste nicht eine Gleichung der Form
> [mm]2*y2^2+0*y1+Faktor*y2[/mm] = 1
> auftreten?

Nein.
Die erste Transformation der HAT beseitigt Dir die gemischten Terme.

>

> Ich habe irgendwo gelesen das die Determinante(T)=+1 sein
> muss, deshalb habe ich die Spalten von T vertauscht.

Es muß halt immer D zu T passen, denn es soll ja [mm] D=T^{T}AT [/mm] sein.

>

> also für einen Vektor x gilt
> [mm]x^T.T^T.A.T.x+x^T.T^T.a=1[/mm]


> [mm]=>x^T.D.x+x^T.d=1[/mm]
> [mm]=>Eigenwert1*x_1^2+Eigenwert2*x_2^2+x^T.d=1[/mm]

>

> wobei jetzt der Vektor d die Form [mm]\vektor{0 \\ Wert}[/mm] oder
> [mm]\vektor{Wert \\ 0}[/mm]

Nicht unbedingt. Es ist halt [mm] D=T^{T}Aŧ. [/mm]


> hat und der Eigenwert2=0 ist, oder
> verstehe ich was falsch?

Bei der Matrix D aus diesem Post ist der 2.Eigenwert=2.

Sofern

>  [mm]2*y2^2+(1/2)*\sqrt(2)*y1+(3/2)*\sqrt(2)*y2[/mm] = 1

richtig ist, was ich nicht prüfe, müßtest Du jetzt den nächsten Schritt der HAT, die verschiebung, vollziehen.

LG Angela
 

Bezug
                                
Bezug
Kegelschnitt: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:47 Fr 05.07.2013
Autor: Rated-R

Vielen Dank, das mit den Verschieben habe ich vergessen!

gruß tom

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]