www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kegel
Kegel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Mo 06.09.2004
Autor: alicia

Ich habe diese Frage in keinem weiteren Forum gestellt.

In einem gegebenen Kegel mit dem Radius R und der Höhe H = 2R liegt ein zweiter Kegel (radius r, Höhe h ) mit der Spitze im Mittelpunkt des äußeren Kegels. Bestimme h und r so, dass das Volumen des inneren Kegels maximal wird.

also ich hab keine ahnung, wie das funktioniert. man muss wohl strahlensätzen anwenden.
bitte helft mir

        
Bezug
Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 06.09.2004
Autor: nitro1185

Hallo!!

Ich muss dir die Antwort leider in Form einer Mitteilung schreiben!

(Habe den Status verändert. Stefan)

[mm]V(r,h)= r²*Pi*h/3[/mm]

Nebenbedingung:  (2R-h):r=2R:R

=> r= (2R-h)/2
--> In V(r,h) einsetzen, dann hast du das Volumen als Funktion von der Höhe h!!!!

Diese Funktion leitest du einmal ab und setzt sie o => Du erhältst jenen radius r für den das Volumen maximal ist!!!!

V(r)=[mm] (4R²h-4Rh²+h³)*Pi/4[/mm]

weiteres kannst du hoffentlich selber!!

grüße daniel

Bezug
        
Bezug
Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mo 06.09.2004
Autor: nitro1185

Hallo!Entlich klappt es mit dem Antwortschreiben!!

Also wie isch schon gesagt habe:

V(h,r)= [mm]R²*Pi*h/3[/mm]

Nebenbedingung:  (2R-h):r=2R:R

=> r= (2R-h)/2
--> In V(r,h) einsetzen, dann hast du das Volumen als Funktion von der Höhe h!!!!

Diese Funktion leitest du einmal ab und setzt sie o => Du erhältst jenen radius r für den das Volumen maximal ist!!!!

V(r)=[mm](4R²h-4Rh²+h³)*Pi/4[/mm]

weiteres kannst du hoffentlich selber!!

grüße daniel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]