www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Kanalcodierunssatz bei Shannon
Kanalcodierunssatz bei Shannon < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kanalcodierunssatz bei Shannon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Sa 16.12.2006
Autor: Gilga

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich wollte gerade den Kanalcodierungssatz aus Shannons Originalarbeit zitieren. Dabei trat aber folgendes Problem auf: Der Einzig passende Satz lautet

Theorem 10: If the correction channel has a capacity equal to [mm] H_y(x) [/mm] it is possible to so encode the correction data as to send it over this channel and correct all but an arbitrarily small fraction epsilon of the errors.
This is not possible if the channel capacity is less than [mm] H_y(x). [/mm]

[mm] (H_y(x) [/mm] ist scheinbar die Äquivokation)

Irgendwie passt das aber nicht zu meiner Vorstellung vom Kanalcodierungssatz der eine Kapazität > R verlangt und sagt dass es dann einen Code mit Informationsrate > R gibt.
Weiß jemand Rat?????

        
Bezug
Kanalcodierunssatz bei Shannon: Korrekturkanal
Status: (Antwort) fertig Status 
Datum: 10:39 Sa 13.01.2007
Autor: Infinit

Hallo Gilga,
wenn ich das Theorem richtig verstehe, so basiert es auf dem folgenden Modell: Man hat eine gestörte Übertragung zwischen Quelle und Sender, diese Übertragung wird von einem Beobachter gemonitort, so dass dieser feststellen kann, was gesendet und was empfangen wurde. Hierbei treten Differenzen auf, die dieser Beobachter korrigieren kann, indem er Zusatzinformationen an den Empfänger sendet über einen ungestörten Kanal. Dies ist die Größe [mm] H_y (x) [/mm], die beschreibt, wieviel Information pro Sekunde geliefert werden muss, um die empfangene Nachricht zu korrigieren. Hierfür muss die Kapazität des Zusatzkanals, über den diese Nachricht übertragen wird,  groß genug sein, um diese Information übertagen zu können und dies ist doch genau die Shannonsche Aussage zur Kanalkapazität bei einer ungestörten Übertragung. Dies passt doch genau zu Deiner Aussage am Ende Deines Beitrags.
Ich hoffe, diese kleine Überlegung hilft Dir weiter.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]