Jordansche Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:06 Mi 18.04.2007 | Autor: | Fuffi |
Aufgabe | Also ich habe folgendes Beispiel:
Gegeben ist die Matrix
[mm] \pmat{ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } \in \IQ^{5x5} [/mm]
|
Das charak. Polynom ist [mm] \lambda^{5} \Rightarrow [/mm] 5-Facher Eigenwert ist 0
Ausserdem ist Rang(A)=3 [mm] \Rightarrow [/mm] Es gibt 2 Jordanblöcke
Wie bekomme ich jetzt aber heraus, ob die Jordan-Normalform
[mm] \pmat{ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 } [/mm] oder [mm] \pmat{ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 } [/mm] ist,
also ob ich einen 1-er und einen 4-er Block oder einen 2-er und einen 3-er Block habe?
MfG
Fuffi
Ich habe diese Frage in keinem anderen Forum und auf keinen anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:57 Mi 18.04.2007 | Autor: | Mumrel |
Also ich habe mir obeigen Link nicht durchgeslen,
aber wenn man die Eigenwerte und die geometrische Vielfachheit (Dimension der Basis der Eigenvektoren zu einem Eigenwert) und die algebraische Vielfachheit (Vielfachheit der Nullstelle des CP) hat so ergibt sich Blockaufteilung wie folgt:
Die Anzahl der Jordanblöcke eines Eigenwertes in der Jordanmatrix ist gleich der geometrsichen Vielfachheit.
Damit ergibt sich der Spezialfall geometrsiche Vielfachheit = algebraische Vielfachheit, und man bekommt eine Diagonalmatrix, da jeder Jordanblock die Größe 1x1 hat.
Hilfts?
Grüße Mumrel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:46 Do 19.04.2007 | Autor: | felixf |
Hallo Fuffi!
> Also ich habe folgendes Beispiel:
> Gegeben ist die Matrix
>
> [mm]\pmat{ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } \in \IQ^{5x5}[/mm]
>
>
> Das charak. Polynom ist [mm]\lambda^{5} \Rightarrow[/mm] 5-Facher
> Eigenwert ist 0
> Ausserdem ist Rang(A)=3 [mm]\Rightarrow[/mm] Es gibt 2
> Jordanblöcke
>
> Wie bekomme ich jetzt aber heraus, ob die
> Jordan-Normalform
>
> [mm]\pmat{ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
> oder [mm]\pmat{ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
> ist,
>
> also ob ich einen 1-er und einen 4-er Block oder einen 2-er
> und einen 3-er Block habe?
indem du das Minimalpolynom berechnest: der Exponent von $x$ im Minimalpolynom gibt die Groesse des groessten Jordan-Kaestchens zum Eigenwert $0$ an.
Da das Minimalpolynom ein Teiler von [mm] $x^5$ [/mm] sein muss, und die Matrix nicht $0$ ist, bleiben also die Moeglichkeiten [mm] $x^i$, [/mm] $i = 2, [mm] \dots, [/mm] 5$. Nun gibt es zwei Bloecke, womit $i < 5$ sein muss. Und wenn der groesste Block Groesse 2 haette, dann passt es nicht. Also muss $i = 3$ oder $i = 4$ sein.
Du berechnest also [mm] $A^3$: [/mm] ist dies gleich $0$, so ist [mm] $x^3$ [/mm] das Minimalpolynom von $A$ und die Jordanform hat ein 3er-Kaestchen und ein 2er-Kaestchen.
Ist dagegen [mm] $A^3 \neq [/mm] 0$, so muss nach obiger Argumentation [mm] $A^4 [/mm] = 0$ sein, das Minimalpolynom also [mm] $x^4$ [/mm] sein; dann hat die Jordanform ein 4er-Kaestchen und ein 1er-Kaestchen.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:48 Do 19.04.2007 | Autor: | felixf |
Hallo nochmal,
> indem du das Minimalpolynom berechnest: der Exponent von [mm]x[/mm]
wenn dir Minimalpolynom nichts sagt, kannst du es vielleicht so in etwas fuer dich verstaendliches uebersetzen: der Exponent vom $x$ ist der Nilpotenzindex vom Eigenwert $0$.
LG Felix
|
|
|
|