www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordannormalform Fehler
Jordannormalform Fehler < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordannormalform Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Sa 02.07.2011
Autor: Harris

Hi!

Ich habe ein kleines Problem bezüglich der Jordannormalform.

z.B. Nehmen wir die Matrix [mm] \pmat{0&0&-1\\0&-1&0\\1&0&2}. [/mm]

Die Eigenwerte berechnen sich schnell zu -1 (einfach) und 1 (doppelt).

Der Eigenraum zu -1 ist [mm] <\vektor{0\\1\\0}>. [/mm]

Der Eigenraum zu 1 ist [mm] <\vektor{1\\0\\-1}>. [/mm]

Der 1. Hauptraum zu 1 ist [mm] <\vektor{1\\0\\0},\vektor{0\\0\\1}>. [/mm]

Wie wähle ich jetzt hieraus meine Transformationsmatrix, damit auch wirklich als Jordannormalform [mm] \pmat{-1&0&0\\0&1&1\\0&0&1} [/mm] herauskommt?

Mir ist klar, dass sowohl [mm] \pmat{0&-1&0\\1&0&0\\0&1&1} [/mm] als auch [mm] \pmat{0&1&0\\1&0&0\\0&-1&-1} [/mm] als Transformationsmatrizen taugen. Aber wie komme ich drauf, dass nicht z.B. [mm] \pmat{0&1&0\\1&0&0\\0&-1&1} [/mm] oder [mm] \pmat{0&-1&0\\1&0&0\\0&1&-1} [/mm] funktionieren?

        
Bezug
Jordannormalform Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 02.07.2011
Autor: angela.h.b.


> Hi!
>  
> Ich habe ein kleines Problem bezüglich der
> Jordannormalform.
>  
> z.B. Nehmen wir die Matrix [mm]\pmat{0&0&-1\\ 0&-1&0\\ 1&0&2}.[/mm]
>  
> Die Eigenwerte berechnen sich schnell zu -1 (einfach) und 1
> (doppelt).
>  
> Der Eigenraum zu -1 ist [mm]<\vektor{0\\ 1\\ 0}>.[/mm]
>  
> Der Eigenraum zu 1 ist [mm]<\vektor{1\\ 0\\ -1}>.[/mm]
>  
> Der 1. Hauptraum zu 1 ist
> [mm]<\vektor{1\\ 0\\ 0},\vektor{0\\ 0\\ 1}>.[/mm]
>  
> Wie wähle ich jetzt hieraus meine Transformationsmatrix,
> damit auch wirklich als Jordannormalform
> [mm]\pmat{-1&0&0\\ 0&1&1\\ 0&0&1}[/mm] herauskommt?
>
> Mir ist klar, dass sowohl [mm]\pmat{0&-1&0\\ 1&0&0\\ 0&1&1}[/mm] als
> auch [mm]\pmat{0&1&0\\ 1&0&0\\ 0&-1&-1}[/mm] als
> Transformationsmatrizen taugen. Aber wie komme ich drauf,
> dass nicht z.B. [mm]\pmat{0&1&0\\ 1&0&0\\ 0&-1&1}[/mm] oder
> [mm]\pmat{0&-1&0\\ 1&0&0\\ 0&1&-1}[/mm] funktionieren?


Hallo,

wenn Du als dritten Basisvektor [mm] v_3 [/mm] den Vektor [mm] v_3:=\vektor{0\\0\\1} [/mm] wählst,
muß ja der zweite Basisvektor [mm] v_2 [/mm] so sein, daß [mm] Av_3=1*v_2+1*v_3 [/mm] gilt. (S. letzte Spalte der JNF).

Man muß also [mm] v_2 [/mm] so nehmen, daß [mm] (A-E)v_3=v_2 [/mm] gilt, hat also, wenn man [mm] v_3 [/mm] festgelegt hat, keine Auswahl.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]