www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Jordannormalform
Jordannormalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mi 07.07.2010
Autor: alina00

Aufgabe
Sei C [mm] \in [/mm] Mat(6x6;R) mit Minimalpolynom
μ(x) = (x + [mm] 1)^2*(x [/mm] − [mm] 1)^2 [/mm] und Determinante
+1. Geben Sie bis auf Ähnlichkeit alle möglichen Jordannormalformen von C an.

Hallo, also mein Problem hier ist, dass ich nicht so ganz weiß, was die Det damit zu tun hat. Am Minimalpolynom erkenne ich ja die Eigenwerte und die Länge des längsten Jordankästchen. Leider weiß ich nicht welche Vielfachheit ich hier von den Eigenwerten habe. Ich hab mal etwas ausprobiert und wenn ich z.B zu jedem EW die Vielfachheit 3 nehme, kommt es nicht hin, weil dann meine det=-1 ist. Ist die det hier also nur da, damit man bestimme Fälle ausschließen kann??

        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mi 07.07.2010
Autor: wieschoo

Ich behaupte du kennst schon die 4x4 Teilmatrix. Setze diesen doch OE in die obere Ecke und fülle die untere Ecke so auf

[m] A:= \left[ \begin {array}{cccccc} 1&0&0&0&0&0\\ \noalign{\medskip}1&1&0&0 &0&0\\ \noalign{\medskip}0&0&-1&0&0&0\\ \noalign{\medskip}0&0&1&-1&0&0 \\ \noalign{\medskip}0&0&0&0&a&0\\ \noalign{\medskip}0&0&0&0&b&c \end {array} \right] [/m]
Wenn du die Determinante ausrechnest, dann erhälst du [mm] $det(A)=ac\overset{!}{=}1$. [/mm]

Bezug
                
Bezug
Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mi 07.07.2010
Autor: alina00

Vielen Dank. Für a und c kommen dann entweder beides 1 oder beides -1 in Frage. Also ist die det wirklich nur dafür da oder kann ich noch etwas anderes an der det bzgl der Jordanform ablesen?

Bezug
                        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mi 07.07.2010
Autor: felixf

Hallo

> Vielen Dank. Für a und c kommen dann entweder beides 1
> oder beides -1 in Frage. Also ist die det wirklich nur
> dafür da oder kann ich noch etwas anderes an der det bzgl
> der Jordanform ablesen?

Die Determinante ist wirklich "nur" dafuer da.

Du hast jetzt drei Moeglichkeiten.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]