www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Jordankästchen
Jordankästchen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordankästchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 So 13.12.2009
Autor: Fawkes

Aufgabe
Sei B [mm] \in M_d(K) [/mm] ein Jordan-Kästchen zum Eigenwert [mm] \lambda, [/mm] d.h.
[mm] B=\pmat{ \lambda & 1 & 0 & ... & 0 \\ 0 & \lambda & 1 & ... & 0 \\ ... \\ 0 & ... & 0 & \lambda & 1 \\0 & 0 & ... & 0 & \lambda}. [/mm]
Man zeige für i = 1, . . . , d:
(1) rg(B − [mm] \lambda*E_d)^i [/mm] = d − i
(2) def(B − [mm] \lambda*E_d)^i [/mm] = i.

Hallo,
also son paar Fragen hätte ich zu dieser Aufgabe mal...
Also der def ist erstmal die dim(ker) und der rg die dim(bild). Wenn ich jetzt diese beiden Sachen miteinander addiere müsste ich ja die dim V bekommen also in diesem Fall d. Damit folgt natürlich wenn def i ist, dann ist der rg d-i. Nur jetzt meine Frage, wie komme ich auf dieses i. Dachte irgendwie, da es ja die dim(ker(den verallgemeinerten eigenräumen) ist und so d-1 sein muss, da es ja die anzahl zu dem Jordankästchen ist, oder lieg ich da grad falsch. wäre jedenfalls nett wenn mir jemanden sagen könnte, wie ich auf def=i komme.
Gruß Fawkes

        
Bezug
Jordankästchen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 13.12.2009
Autor: pelzig


> Sei B [mm]\in M_d(K)[/mm] ein Jordan-Kästchen zum Eigenwert
> [mm]\lambda,[/mm] d.h.
>  [mm]B=\pmat{ \lambda & 1 & 0 & ... & 0 \\ 0 & \lambda & 1 & ... & 0 \\ ... \\ 0 & ... & 0 & \lambda & 1 \\0 & 0 & ... & 0 & \lambda}.[/mm]
>  
> Man zeige für i = 1, . . . , d:
>  (1) rg(B − [mm]\lambda*E_d)^i[/mm] = d − i
>  (2) def(B − [mm]\lambda*E_d)^i[/mm] = i.
>  Hallo,
>  also son paar Fragen hätte ich zu dieser Aufgabe mal...
>  Also der def ist erstmal die dim(ker) und der rg die
> dim(bild). Wenn ich jetzt diese beiden Sachen miteinander
> addiere müsste ich ja die dim V bekommen also in diesem
> Fall d. Damit folgt natürlich wenn def i ist, dann ist der
> rg d-i.

Richtig, (1) und (2) sind äquivalent denn rg(A)+def(A)=dim(V)=d.

> Nur jetzt meine Frage, wie komme ich auf dieses i.
> Dachte irgendwie, da es ja die dim(ker(den
> verallgemeinerten eigenräumen) ist und so d-1 sein muss,
> da es ja die anzahl zu dem Jordankästchen ist, oder lieg
> ich da grad falsch. wäre jedenfalls nett wenn mir jemanden
> sagen könnte, wie ich auf def=i komme.

Verstehe ich nicht... ist auf jeden Fall falsch. Schreib doch einfach mal hin wie [mm] $B-\lambda*E_d$ [/mm] aussieht, und dann berechne davon die zweite, dritte, vierte Potenz usw. Dann fällt dir sicher was auf...

Gruß, Robert


Bezug
                
Bezug
Jordankästchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 So 13.12.2009
Autor: Fawkes

jops, hat sich alles geklärt :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]