www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Jordan´sche Normalform
Jordan´sche Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan´sche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 09.06.2012
Autor: quasimo

Aufgabe
Bestimme die Jordan´sche Normalform der Matrix
[mm] A=\pmat{ 0 & 1&0&-1&0&1&0 \\ &0&1&0&0&0&-1\\ &&0&0&0&1&0\\&&&0&1&0&-1\\&&&&0&1&0\\&&&&&0&0\\ &&&&&&0} [/mm]

Der einzige Eigenwert ist [mm] \lambda [/mm] =0 zu der algebraischen Vielfachheit 7.
D.h die Blöck zum EIgenwert 0 sind insgesamt der Länge 7.
N= A - 0 [mm] I_n [/mm] = A
[mm] A^2 =\pmat{ 0 & 0&1&0&-1&0&0 \\ &0&0&0&0&1&0\\ &&0&0&0&0&0\\&&&0&0&1&0\\&&&&0&0&0\\&&&&&0&0\\ &&&&&&0} [/mm]
[mm] A^3 [/mm] =0

dim(ker A) = 3 -> 3 Blöcke zum Eigenwert 0
dim(ker A ^2 )=5
dim(ker [mm] A^3)=7 [/mm] -> [mm] ker(A^3)=\IR^7 [/mm]

Ich verstehe nun nicht, wie ich die Länge der Blöcke herausbekomme.


        
Bezug
Jordan´sche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Sa 09.06.2012
Autor: MathePower

Hallo quasimo,

> Bestimme die Jordan´sche Normalform der Matrix
>  [mm]A=\pmat{ 0 & 1&0&-1&0&1&0 \\ &0&1&0&0&0&-1\\ &&0&0&0&1&0\\&&&0&1&0&-1\\&&&&0&1&0\\&&&&&0&0\\ &&&&&&0}[/mm]
>  
> Der einzige Eigenwert ist [mm]\lambda[/mm] =0 zu der algebraischen
> Vielfachheit 7.
>  D.h die Blöck zum EIgenwert 0 sind insgesamt der Länge
> 7.
>  N= A - 0 [mm]I_n[/mm] = A
>  [mm]A^2 =\pmat{ 0 & 0&1&0&-1&0&0 \\ &0&0&0&0&1&0\\ &&0&0&0&0&0\\&&&0&0&1&0\\&&&&0&0&0\\&&&&&0&0\\ &&&&&&0}[/mm]
>  
> [mm]A^3[/mm] =0
>  
> dim(ker A) = 3 -> 3 Blöcke zum Eigenwert 0
>  dim(ker A ^2 )=5
>  dim(ker [mm]A^3)=7[/mm] -> [mm]ker(A^3)=\IR^7[/mm]

>  


Die Anzahl [mm]N_{l}\left(\lambda\right)[/mm] der elementaren Jordanblöcke
der Größe l zum Eigenwert [mm]\lambda[/mm] ergibt sich nach folgender Formel:

[mm]N_{l}\left(\lambda\right)=-\operatorname{dim \ Kern}\left(A-\lambda*I\right)^{l+1}+2*\operatorname{dim \ Kern}\left(A-\lambda*I\right)^{l}-\operatorname{dim \ Kern}\left(A-\lambda*I\right)^{l-1}[/mm]

,wobei I die Einheitsmatrix  ist.


> Ich verstehe nun nicht, wie ich die Länge der Blöcke
> herausbekomme.

>


Gruss
MathePower  

Bezug
                
Bezug
Jordan´sche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Sa 09.06.2012
Autor: quasimo

Danke.

Und wie weiß man in der  Nebendiagonale  ob ein1er oder 0er vorkommt?

Bezug
                        
Bezug
Jordan´sche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 09.06.2012
Autor: MathePower

Hallo quasimo,

> Danke.
>  
> Und wie weiß man in der  Nebendiagonale  ob ein1er oder
> 0er vorkommt?


Das hängt von der Größe des elementaren Jordanblocks ab.


Gruss
MathePower

Bezug
                                
Bezug
Jordan´sche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 09.06.2012
Autor: quasimo

hallo,
aber wie sehe ich trotzdem ob nur ein 1er und 0er in der nebendiagonle ist?

Lg

Bezug
                                        
Bezug
Jordan´sche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 09.06.2012
Autor: MathePower

Hallo quasimo,

> hallo,
>  aber wie sehe ich trotzdem ob nur ein 1er und 0er in der
> nebendiagonle ist?
>  


Ein 1er tritt in der Nebendiagonale auf,
wenn der elementare Jordanblock die Größe 2 hat.
Zwei 1er treten in der Nebendiagonale auf,
wenn der elementare Jordanblock die Größe 3 hat


> Lg


Gruss
MathePower

Bezug
                                                
Bezug
Jordan´sche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 So 10.06.2012
Autor: quasimo

Ich danke dir.
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]