www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Jacobson-Radikal
Jacobson-Radikal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobson-Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Di 26.12.2017
Autor: mimo1

Aufgabe
Zeige: Sei R [mm] \subset [/mm] R' ganz, so gilt [mm] Jac(R)=R\cap [/mm] Jac(R')

Hallo zusammen,

erstmaml zur 1. Inklusion:

[mm] "\subseteq": [/mm] Sei [mm] x\in [/mm] Jac(R) dann ist x max. und [mm] x\in [/mm] Spec(R), dann ex. ein Q [mm] \in [/mm] Spec(R') mit [mm] x=R\cap [/mm] Q und da [mm] R\subset [/mm] R' ist  [mm] Q\in [/mm] Jac(R') also [mm] x\in R\cap [/mm] Jac(R')

[mm] "\supseteq" [/mm] Sei [mm] x\in R\cap [/mm] Jac(R')  [mm] \Rightarrow x\in [/mm] R und [mm] x\in [/mm] Jac(R')
[mm] \Rightarrow xy-1\in (R')^{\*} \forall y\in [/mm] R' [mm] \gdw xy-1\in R^{\*} \forall y\in [/mm] R (da R' ganz über R ist)
[mm] \gdw x\in [/mm] Jac(R)

Stimmt das soweit? Vielen Dank im Voraus.

        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Di 26.12.2017
Autor: UniversellesObjekt


> Zeige: Sei R [mm]\subset[/mm] R' ganz, so gilt [mm]Jac(R)=R\cap[/mm] Jac(R')
>  Hallo zusammen,
>  
> erstmaml zur 1. Inklusion:
>  
> [mm]"\subseteq":[/mm] Sei [mm]x\in[/mm] Jac(R) dann ist x max. und [mm]x\in[/mm]
> Spec(R),

Was soll das denn heißen? Ein Element von $R$ kann weder "max." sein (was soll das heißen?) noch ein Element vom Spektrum sein.

> dann ex. ein Q [mm]\in[/mm] Spec(R') mit [mm]x=R\cap[/mm] Q und da
> [mm]R\subset[/mm] R' ist  [mm]Q\in[/mm] Jac(R') also [mm]x\in R\cap[/mm] Jac(R')
>  
> [mm]"\supseteq"[/mm] Sei [mm]x\in R\cap[/mm] Jac(R')  [mm]\Rightarrow x\in[/mm] R und
> [mm]x\in[/mm] Jac(R')
>  [mm]\Rightarrow xy-1\in (R')^{\*} \forall y\in[/mm] R' [mm]\gdw xy-1\in R^{\*} \forall y\in[/mm]
> R (da R' ganz über R ist)
>  [mm]\gdw x\in[/mm] Jac(R)
>  
> Stimmt das soweit? Vielen Dank im Voraus.


Bezug
                
Bezug
Jacobson-Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 26.12.2017
Autor: mimo1

Da ich ein Element aus dem Jacobson-Radikal nehme und diese als das Durchschnitt aller maximalen Ideale in R ist, ist x maximales Ideal. Und jedes maximiale Ideal auch prim ist folgt daraus, dass [mm] x\in [/mm] Spec(R) (Menge der PRimideale), oder?

Bezug
                        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Di 26.12.2017
Autor: UniversellesObjekt

Wiederhole, was der Durchschnitt von Mengen ist.

Bezug
                        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Mi 27.12.2017
Autor: fred97


> Da ich ein Element aus dem Jacobson-Radikal nehme und diese
> als das Durchschnitt aller maximalen Ideale in R ist, ist x
> maximales Ideal.

Aua ! Das tut weh ! Wenn x ein Element des  Jacobson-Radikals ist, so ist x ein Element des Rings. Ein max. Ideal aber ist eine Teilmenge des Rings.

Für x gilt: x ist enthalten in jedem max. Ideal !

> Und jedes maximiale Ideal auch prim ist
> folgt daraus, dass [mm]x\in[/mm] Spec(R) (Menge der PRimideale),
> oder?

x ist in jedem Primideal enthalten !


Bezug
        
Bezug
Jacobson-Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Mi 27.12.2017
Autor: UniversellesObjekt

Um noch etwas zu einer Lösung der Aufgabe zu sagen (aber da fehlt wirklich einiges an Grundlagend, habe ich das Gefühl): Die Sätze von []Cohen-Seidenberg sind sicherlich hilfreich.

Liebe Grüße
UniversellsObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]