www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Jacobi Verfahren
Jacobi Verfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Verfahren: Bestimmung der Eigenwerte
Status: (Frage) beantwortet Status 
Datum: 09:21 Fr 12.02.2010
Autor: ul7ima

Aufgabe
Gegeben ist die symmetrische Matrix

A = [mm] \pmat{ -5 & 4 & -3\wurzel{3} \\ 4 & 3 & -2\wurzel{3}\\ -3\wurzel{3} & -2\wurzel{3} & 1} [/mm]

Führen Sie einen Schritt des JACOBI-Verfahrens mit Maximalpivotwahl zur Bestimmmung der Eigenwerte durch und geben Sie die transformierte Matrix an.

Hallo,

ich finde nicht so wirklich einen Anfang. Was ich über das JACOBI-Verfahren gefunden habe war alles aus der Form Ax=b. Muss ich da b=0 setzten?
Ich habe auch nirgendwo mal ein Beispiel gefunden wo das mal Durchgerechnet wurde.... Jemand eine Idee oder Link oder Lösung?

Vielen Dank
Roman

        
Bezug
Jacobi Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Fr 12.02.2010
Autor: felixf

Hallo Roman!

> Gegeben ist die symmetrische Matrix
>  
> A = [mm]\pmat{ -5 & 4 & -3\wurzel{3} \\ 4 & 3 & -2\wurzel{3}\\ -3\wurzel{3} & -2\wurzel{3} & 1}[/mm]
>  
> Führen Sie einen Schritt des JACOBI-Verfahrens mit
> Maximalpivotwahl zur Bestimmmung der Eigenwerte durch und
> geben Sie die transformierte Matrix an.
>  Hallo,
>  
> ich finde nicht so wirklich einen Anfang. Was ich über das
> JACOBI-Verfahren gefunden habe war alles aus der Form Ax=b.
> Muss ich da b=0 setzten?

Kann es sein, dass du an den falschen Stellen gesucht hast, etwa an []dieser Stelle (achte auf der Seite mal auf den hellgrauen Kasten direkt unter dem Titel)? []Hier kommt kein $b$ vor. Und unten findest du auch Links, wo du mehr Informationen finden kannst.

LG Felix


Bezug
                
Bezug
Jacobi Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 Fr 12.02.2010
Autor: ul7ima

Ahh ok...das Berühmte "Wer lesen kann ist klar im Vorteil" ;>
Danke für den Hinweis ich probier es mal damit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]