www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Jacobi Matrix & Transformation
Jacobi Matrix & Transformation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Matrix & Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Do 03.06.2010
Autor: Master_X

Hey,
ich habe eine Koordinaten-Transformation [mm] T:\overline{\Omega} \to \Omega, \qquad \overline{\Omega}, \Omega \in \IR^2 [/mm] und möchte dazu die Funktionaldeterminante zu unterschiedlichen Punkten aus  [mm] \overline{\Omega} [/mm] berechnen.

Bis jetzt bilde ich einen Punkt x [mm] \in \overline{\Omega} [/mm] nach [mm] \xi \in \Omega [/mm] ab und kann dann zwei Vektoren v und w  an [mm] \xi [/mm] berechnen, so dass diese in die Richtungen des (gekrümmten) Koordinatensystems auf [mm] \Omega [/mm] zeigen.

Bei der Bedeutung dieser beiden Vektoren bin ich mir nicht sicher. Sind diese vier Komponenten die die Einträge der Jacobi Matrix?

Speziell: für den Vektor der nach "rechts" (ursprüngliche x Richtung) zeigt, ist dessen erste Komponente [mm] \partial f_1 [/mm] x  und seine zweite [mm] \partial f_1 [/mm] y. Also die obere Zeile der Jacobi Matrix?
Und beim zweiten analog?


Schonmal Danke für eure Hilfe.



        
Bezug
Jacobi Matrix & Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Do 03.06.2010
Autor: gfm


> Hey,
> ich habe eine Koordinaten-Transformation
> [mm]T:\overline{\Omega} \to \Omega, \qquad \overline{\Omega}, \Omega \in \IR^2[/mm]
> und möchte dazu die Funktionaldeterminante zu
> unterschiedlichen Punkten aus  [mm]\overline{\Omega}[/mm]
> berechnen.
>  
> Bis jetzt bilde ich einen Punkt x [mm]\in \overline{\Omega}[/mm]
> nach [mm]\xi \in \Omega[/mm] ab und kann dann zwei Vektoren v und w  
> an [mm]\xi[/mm] berechnen, so dass diese in die Richtungen des
> (gekrümmten) Koordinatensystems auf [mm]\Omega[/mm] zeigen.
>  
> Bei der Bedeutung dieser beiden Vektoren bin ich mir nicht
> sicher. Sind diese vier Komponenten die die Einträge der
> Jacobi Matrix?
>  
> Speziell: für den Vektor der nach "rechts" (ursprüngliche
> x Richtung) zeigt, ist dessen erste Komponente [mm]\partial f_1[/mm]
> x  und seine zweite [mm]\partial f_1[/mm] y. Also die obere Zeile
> der Jacobi Matrix?
>  Und beim zweiten analog?
>
>
> Schonmal Danke für eure Hilfe.
>  
>  

[]Jacobi-Matrix

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]