www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Jacobi Matrix
Jacobi Matrix < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:31 Mo 28.05.2012
Autor: unibasel

Aufgabe
Man untersuche die folgende Funktion auf Extrema:
i) [mm] f(x,y)=x^{3}+y^{3}+3xy [/mm] in [mm] \IR^{2} [/mm]

Nun [mm] \nabla f(x,y)=\pmat{ 3x^{2}+3y \\ 3y^{2}+3x } [/mm]

Wieso wird denn das [mm] y^{3} [/mm] weggelassen?
Ich bin völlig verwirrt wegen den partiellen Ableitungen...

Wenn man nach x ableitet, dann wird doch y als Konstante belassen und auch umgekehrt?
Habt ihr mir vielleicht ein gutes Beispiel, in dem dies klarer wird?

Also der nächste Schritt wäre dann: schauen, welche Punkte als Extrema in Frage kommen, indem man die Gleichungen löst oder?

Woraus besteht dann meine Hessematrix?

Danke schonmal für meine vielen Fragen.
mfg:)

        
Bezug
Jacobi Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mo 28.05.2012
Autor: notinX

Hallo,

> Man untersuche die folgende Funktion auf Extrema:
>  i) [mm]f(x,y)=x^{3}+y^{3}+3xy[/mm] in [mm]\IR^{2}[/mm]
>  Nun [mm]\nabla f(x,y)=\pmat{ 3x^{2}+3y \\ 3y^{2}+3x }[/mm]
>  
> Wieso wird denn das [mm]y^{3}[/mm] weggelassen?
> Ich bin völlig verwirrt wegen den partiellen
> Ableitungen...

was verwirrt Dich denn?

>  
> Wenn man nach x ableitet, dann wird doch y als Konstante
> belassen und auch umgekehrt?

Ja genau.

> Habt ihr mir vielleicht ein gutes Beispiel, in dem dies
> klarer wird?

Nimm doch dieses Beispiel. Du willst $f(x,y)$ partiell nach x ableiten. Stell Dir also vor y wäre eine Konstante (z.B. y=k):
$ [mm] f(x)=x^{3}+k^{3}+3xk [/mm] $
Leite das nun nach x ab und ersetze dann wieder k durch y.

>
> Also der nächste Schritt wäre dann: schauen, welche
> Punkte als Extrema in Frage kommen, indem man die
> Gleichungen löst oder?

Ich weiß nicht welche Gleichungen Du meinst, da Du keine hingeschrieben hast. Aber ja, dazu muss man auf jeden Fall Gleichungen lösen.

>  
> Woraus besteht dann meine Hessematrix?

Aus Einträgen ;-) - Welche das sind steht sicher im Skript/Buch oder falls wider Erwarten nicht, steht das auch im Internet.

>  
> Danke schonmal für meine vielen Fragen.
>  mfg:)

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]