www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Ist N vollständig?
Ist N vollständig? < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist N vollständig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 24.03.2010
Autor: oby

Aufgabe
Ist [mm] \IN [/mm] vollständig?

Hallo Matheraum!
Also meine Vermutung ist, dass [mm] \IN [/mm] vollständig ist, denn es gibt ja in [mm] \IN [/mm] nur die konstanten Folge, die Cauchyfolgen sind.  Also sagen wir [mm] x_n [/mm] = N [mm] \forall [/mm] n . Damit ist der Grenzwert natürlich auch N und somit in [mm] \IN [/mm] . Also müsste doch [mm] \IN [/mm] vollständig sein, oder?
Was mich nur verwirrt ist, dass man sich ja immer vollständige metrische Räume ohne "Löcher" vorstellt, was bei [mm] \IN [/mm] aber nicht zutrifft.
Kann mir jemand vielleicht ein Beispiel einer Cauchyfolge in [mm] \IN [/mm] nennen, dessen Grenzwert nicht in [mm] \IN [/mm] liegt?
Vielen Dank schonmal,
MfG oby

        
Bezug
Ist N vollständig?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Mi 24.03.2010
Autor: fred97


> Ist [mm]\IN[/mm] vollständig?
>  Hallo Matheraum!
>  Also meine Vermutung ist, dass [mm]\IN[/mm] vollständig ist, denn
> es gibt ja in [mm]\IN[/mm] nur die konstanten Folge, die
> Cauchyfolgen sind.  Also sagen wir [mm]x_n[/mm] = N [mm]\forall[/mm] n .

Nicht ganz ! Sei [mm] (x_n) [/mm] eine Folge in [mm] \IN [/mm]  .     [mm] (x_n) [/mm] ist eine Cauchyfolge [mm] \gdw [/mm] es ex. ein [mm] n_0 [/mm] und ein N  in [mm] \IN [/mm] mit:

            [mm] $x_n [/mm] = N$  für $n [mm] \ge n_0$ [/mm]




> Damit ist der Grenzwert natürlich auch N und somit in [mm]\IN[/mm]
> . Also müsste doch [mm]\IN[/mm] vollständig sein, oder?

[mm] \IN [/mm] als Teilraum des metr. Raumes [mm] $(\IR, [/mm] |*|)$ ist vollständig




>  Was mich nur verwirrt ist, dass man sich ja immer
> vollständige metrische Räume ohne "Löcher" vorstellt,


Na ja.  [mm] \IR [/mm] \ (-1,1)  ist ebenfalls vollständig, hat aber ein "großes Loch"


> was bei [mm]\IN[/mm] aber nicht zutrifft.
> Kann mir jemand vielleicht ein Beispiel einer Cauchyfolge
> in [mm]\IN[/mm] nennen, dessen Grenzwert nicht in [mm]\IN[/mm] liegt?

S.o.


FRED


>  Vielen Dank schonmal,
>  MfG oby


Bezug
                
Bezug
Ist N vollständig?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Mi 24.03.2010
Autor: oby

Ok, dann sind ja meine Zweifel ausgeräumt. Vielen Dank! Jetzt kann ich wieder beruhigt weiterlernen.. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]