www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Ist Matrix diagonalähnlich?
Ist Matrix diagonalähnlich? < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist Matrix diagonalähnlich?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mi 16.09.2009
Autor: SGAdler

Aufgabe
Gegeben sei die Matrix

[mm] \begin{pmatrix} -1 & 0 & 2 \\ 6 & 4 & 16 \\ -2 & 0 & 3 \end{pmatrix} [/mm]

Eigenwerte, Eigenvektoren?
Ist A diagonalähnlich?

Morgen,

ich habe versucht die Aufgabe zu lösen und habe eine Frage bezüglich der letzten Frage.
Und zwar habe ich als Eigenwerte 1,1 und 4 rausbekommen.
Als Eigenvektoren [mm] \lambda [/mm] (3 22 [mm] 3)^T [/mm] und [mm] \lambda [/mm] (0 1 [mm] 0)^T. [/mm]
Meiner Meinung nach ist die Matrix nicht diagonalähnlich, weil es 3 lin. unabhängige Spaltenvektoren gibt, aber nur 2 verschiedene Eigenwerte.
Ein Kumpel behauptet, dass A diagonalähnlich ist, weil die Eigenwerte gleich dem Rang der Matrix sind.
Wer hat denn nun Recht?

Gruß

        
Bezug
Ist Matrix diagonalähnlich?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mi 16.09.2009
Autor: schachuzipus

Hallo SGAdler,

> Gegeben sei die Matrix
>
> [mm]\begin{pmatrix} -1 & 0 & 2 \\ 6 & 4 & 16 \\ -2 & 0 & 3 \end{pmatrix}[/mm]
>  
> Eigenwerte, Eigenvektoren?
>  Ist A diagonalähnlich?
>  Morgen,
>  
> ich habe versucht die Aufgabe zu lösen und habe eine Frage
> bezüglich der letzten Frage.
>  Und zwar habe ich als Eigenwerte 1,1 und 4 rausbekommen. [ok]
>  Als Eigenvektoren [mm]\lambda[/mm] (3 22 [mm]3)^T[/mm] und [mm]\lambda[/mm] (0 1
> [mm]0)^T.[/mm]
>  Meiner Meinung nach ist die Matrix nicht diagonalähnlich,
> weil es 3 lin. unabhängige Spaltenvektoren gibt, aber nur
> 2 verschiedene Eigenwerte.
>  Ein Kumpel behauptet, dass A diagonalähnlich ist, weil
> die Eigenwerte gleich dem Rang der Matrix sind.
>  Wer hat denn nun Recht?

Du hast recht, die Matrix ist nicht diagonalisierbar, denn der Eigenraum zum Eigenwert [mm] $\lambda=1$ [/mm] hat nur Dimension 1, er müsste aber Dimension 2 haben, damit die Matrix diagonalisierbar ist.

Stichwort: [mm] \underbrace{algebraische Vielfachheit}_{\text{Vielfachheit als Nullstelle im charakt. Polynom}} [/mm] = [mm] \underbrace{geometrische Vielfachheit}_{\text{Dimension des zugeh. Eigenraums}} [/mm]

>  
> Gruß


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]