www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Invertierbare Matrix
Invertierbare Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrix: Idee
Status: (Frage) beantwortet Status 
Datum: 14:44 So 20.05.2007
Autor: butumba

Hallöchen.

Habe mal folgende Frage:

In welchem Restklassenkörper Zp ist die Matrix A= (1 2 3)
                                                                                 (2 -1 -2)
                                                                                 (-1 1 3)
invertierbar? Dabei steht das p für Primzahlen und das Z für die die ganzen Zahlen steht. Ich weiß nicht so recht, was ich da machen muss.
desweiteren soll ich den Kern bestimmen für alle Restklassenkörper. Der ist bei mir 0, da ich gerechnet habe: dim ker(A)=3-rang(A)
Müsste doch stimmen, oder?

Und wie kann ich die Invertierbare berechnern für Z7?

Ich würde mich über eine Hilfe freuen ;-) Lg





        
Bezug
Invertierbare Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 20.05.2007
Autor: Karsten0611

Hi butumba!

> Habe mal folgende Frage:
>  
> In welchem Restklassenkörper Zp ist die Matrix A= (1 2 3)
>                                                            
>                       (2 -1 -2)
>                                                            
>                       (-1 1 3)
>  invertierbar? Dabei steht das p für Primzahlen und das Z
> für die die ganzen Zahlen steht. Ich weiß nicht so recht,
> was ich da machen muss.

Berechne die Determinante der Matrix und schau, für welche p sie kongruent zu 0 (modulo p) ist. Am besten machst Du eine Primzahlzerlegung der Determinante. Ist det(A) = 0, so ist die Matrix nicht invertierbar.

> desweiteren soll ich den Kern bestimmen für alle
> Restklassenkörper. Der ist bei mir 0, da ich gerechnet
> habe: dim ker(A)=3-rang(A)
>  Müsste doch stimmen, oder?

Woher weißt Du, daß rang(A) = 3 ist? Das hängt sehr vom zugrunde liegenden Restklassenkörper ab.

Zur Bestimmung des Kerns mußt Du das Gleichungssystem Ax = 0 lösen, also alle x bestimmen, die durch A auf 0 abgebildet werden.

>  
> Und wie kann ich die Invertierbare berechnern für Z7?

Üblicherweise erweitert man die Matrix A um die Einheitsmatrix

[mm] \pmat{ 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & -1 & -2 & 0 & 1 & 0 \\ -1 & 1 & 3 & 0 & 0 & 1 } [/mm]

und führt damit den Gauß-Algorithmus aus, d.h. man überführt A in die Einheitsmatrix

[mm] \pmat{ 1 & 0 & 0 & ... & ... & ... \\ 0 & 1 & 0 & ... & ... & ... \\ 0 & 0 & 1 & ... & ... & ... } [/mm]

Die inverse Matrix zu A besteht dann aus den letzten drei Spalten der Matrix.

LG
Karsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]