www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Invertierbare Matrix
Invertierbare Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 22.01.2014
Autor: Gina2013

Aufgabe
ES sei R ein Kommutativer Ring, x,y,z [mm] \in [/mm] R beliebig und B:= [mm] \pmat{ 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 }. [/mm] Für welche x,y,z ist B invertierbar? Bestimmen im Fall der Invertierbarkeit B^-1 mit Hilfe der Adjunkten.

Habe B^-1=(1/det B) x adj B= [mm] \pmat{ 1 & -x & xy-z \\ 0 & 1 & -y \\ 0 & 0 & 1}, [/mm] weiß aber nicht wie ich die x,y,z bestimmen soll.
Werde mich sehr freuen über jede Hilfe.

        
Bezug
Invertierbare Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Mi 22.01.2014
Autor: MaslanyFanclub

Hallo,

> ES sei R ein Kommutativer Ring, x,y,z [mm]\in[/mm] R beliebig und
> B:= [mm]\pmat{ 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 }.[/mm] Für
> welche x,y,z ist B invertierbar? Bestimmen im Fall der
> Invertierbarkeit B^-1 mit Hilfe der Adjunkten.
>  Habe B^-1=(1/det B) x adj B= [mm]\pmat{ 1 & -x & xy-z \\ 0 & 1 & -y \\ 0 & 0 & 1},[/mm]
> weiß aber nicht wie ich die x,y,z bestimmen soll.

Du hast die Inverse richtig bestimmt.
Wozu willst du jetzt noch x,y,z bestimmen?


Bezug
        
Bezug
Invertierbare Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 03:32 Mi 22.01.2014
Autor: DieAcht

Hallo,


> ES sei R ein Kommutativer Ring, x,y,z [mm]\in[/mm] R beliebig und
> B:= [mm]\pmat{ 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 }.[/mm] Für
> welche x,y,z ist B invertierbar? Bestimmen im Fall der
> Invertierbarkeit B^-1 mit Hilfe der Adjunkten.
>  Habe B^-1=(1/det B) x adj B= [mm]\pmat{ 1 & -x & xy-z \\ 0 & 1 & -y \\ 0 & 0 & 1},[/mm]

[ok]

> weiß aber nicht wie ich die x,y,z bestimmen soll.

B [mm] \text{invertierbar}\gdw\det(B)\not=0 [/mm]

Es gilt:

      [mm] \det(B)=1\not=0 [/mm]

      [mm] \Rightarrow [/mm] B invertierbar für alle [mm] $x,y,z\in [/mm] R$.


DieAcht

Bezug
                
Bezug
Invertierbare Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Mi 22.01.2014
Autor: Gina2013

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]