www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Invertierbar, Spalten l.u.
Invertierbar, Spalten l.u. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbar, Spalten l.u.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 So 02.11.2014
Autor: quasimo

Aufgabe
Sei [mm] M=\pmat{v_1 & u_1 & w_1\\ v_2 & u_2 & w_2 \\v_3 & u_3 & w_3} [/mm] mit Einträgen der reellen Zahlen.
Zeige wenn M nicht invertierbar ist folgt die Existenz von [mm] (k,\lambda,\mu) \not=(0,0,0) [/mm] mit [mm] ku+\lambda [/mm] u + [mm] \mu [/mm] w=0

Hallo
Ich brauche hilfe bei dem Bsp für meine Nachhilfestudenten. Sie hatten nämlich noch nicht das Thema Rang oder Dimensionen und dürfen es dementsprechend noch nicht verwenden.

Ich hab erst versucht mit der assozierte Abbildung von der Matrix M zu arbeiten oder mittels Widerspruchbeweis (also mit der Voraussetzung [mm] ku+\lambda [/mm] u + [mm] \mu [/mm] w=0 => k=0 [mm] \wedge\lambda=0\wedge\mu=0 [/mm] folgt, dass M invertierbar ist), aber ich komme nicht auf die Aussage.
Das M nicht invertierbar ist haben sie definiert [mm] \not\exists M^{-1}:MM^{-1}=I=M^{-1}M [/mm]

lg

        
Bezug
Invertierbar, Spalten l.u.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 So 02.11.2014
Autor: M.Rex

Hallo


> Sei [mm]M=\pmat{v_1 & u_1 & w_1\\ v_2 & u_2 & w_2 \\v_3 & u_3 & w_3}[/mm]
> mit Einträgen der reellen Zahlen.
> Zeige wenn M nicht invertierbar ist folgt die Existenz von
> [mm](k,\lambda,\mu) \not=(0,0,0)[/mm] mit [mm]ku+\lambda[/mm] u + [mm]\mu[/mm] w=0
> Hallo
> Ich brauche hilfe bei dem Bsp für meine
> Nachhilfestudenten. Sie hatten nämlich noch nicht das
> Thema Rang oder Dimensionen und dürfen es dementsprechend
> noch nicht verwenden.

Haben sie denn schonmal Matrizen invertiert? Und wenn ja, wie? Mit dem Ergänzen auf die Einheitsmatrix?

Dann bekämst du hier:


[mm] \pmat{v_1 & u_1 & w_1 & | & 1 & 0 & 0\\ v_2 & u_2 & w_2 & | & 0 & 1 & 0 \\v_3 & u_3 & w_3 & | & 0 & 0 & 1} [/mm]

Bringe nun den Vorderen Teil mal auf die Einheitsmatrix, dann hast du hinten die Inverse stehen. Dann wirst du irgendwo durch "Teile mit Variablen" teilen müssen, das geht natürlich nur dann, wenn diese "Teile mit Variablen" nicht Null sind.

>

> Ich hab erst versucht mit der assozierte Abbildung von der
> Matrix M zu arbeiten oder mittels Widerspruchbeweis (also
> mit der Voraussetzung [mm]ku+\lambda[/mm] u + [mm]\mu[/mm] w=0 => k=0
> [mm]\wedge\lambda=0\wedge\mu=0[/mm] folgt, dass M invertierbar ist),

Das wäre die Kontraporsition.

> aber ich komme nicht auf die Aussage.
> Das M nicht invertierbar ist haben sie definiert
> [mm]\not\exists M^{-1}:MM^{-1}=I=M^{-1}M[/mm]

Viel Interessanter finde ich erstmal zu wissen, wie die Invertierbarkeit definiert wurde. Mit
"M ist invertierbar, wenn es eine Matrix N gibt, so dass [mm] $M\cdot N=N\cdot [/mm] M = I$"?

>

> lg

Marius

Bezug
                
Bezug
Invertierbar, Spalten l.u.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 So 02.11.2014
Autor: quasimo


> Hallo
>  
>
> > Sei [mm]M=\pmat{v_1 & u_1 & w_1\\ v_2 & u_2 & w_2 \\v_3 & u_3 & w_3}[/mm]
>  
> > mit Einträgen der reellen Zahlen.
>  > Zeige wenn M nicht invertierbar ist folgt die Existenz

> von
>  > [mm](k,\lambda,\mu) \not=(0,0,0)[/mm] mit [mm]ku+\lambda[/mm] u + [mm]\mu[/mm] w=0

>  > Hallo

>  > Ich brauche hilfe bei dem Bsp für meine

>  > Nachhilfestudenten. Sie hatten nämlich noch nicht das

>  > Thema Rang oder Dimensionen und dürfen es

> dementsprechend
>  > noch nicht verwenden.

>  
> Haben sie denn schonmal Matrizen invertiert? Und wenn ja,
> wie? Mit dem Ergänzen auf die Einheitsmatrix?
>  
> Dann bekämst du hier:
>  
>
> [mm]\pmat{v_1 & u_1 & w_1 & | & 1 & 0 & 0\\ v_2 & u_2 & w_2 & | & 0 & 1 & 0 \\v_3 & u_3 & w_3 & | & 0 & 0 & 1}[/mm]
>  
> Bringe nun den Vorderen Teil mal auf die Einheitsmatrix,
> dann hast du hinten die Inverse stehen. Dann wirst du
> irgendwo durch "Teile mit Variablen" teilen müssen, das
> geht natürlich nur dann, wenn diese "Teile mit Variablen"
> nicht Null sind.

Hallo,
Ja dann weiß man, dass die Matrix M genau dann invertierbar ist wenn die [mm] Determinante\not= [/mm] 0 ist.
Aber wie bringst du das in Verhältnis mit der unabhängigkeit der Spaltenvektoren?=

lg

Bezug
                        
Bezug
Invertierbar, Spalten l.u.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mo 03.11.2014
Autor: DieAcht

Hallo,


>  Ja dann weiß man, dass die Matrix M genau dann
> invertierbar ist wenn die [mm]Determinante\not=[/mm] 0 ist.

Richtig.

> Aber wie bringst du das in Verhältnis mit der
> unabhängigkeit der Spaltenvektoren?=

[mm] $M\$ [/mm] ist genau dann invertierbar, falls die Spaltenvektoren
linear unabhängig sind (Ist das nicht klar?).


Gruß
DieAcht

Bezug
                                
Bezug
Invertierbar, Spalten l.u.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mo 03.11.2014
Autor: quasimo


> Hallo,
>  
>
> >  Ja dann weiß man, dass die Matrix M genau dann

> > invertierbar ist wenn die [mm]Determinante\not=[/mm] 0 ist.
>  
> Richtig.
>  
> > Aber wie bringst du das in Verhältnis mit der
> > unabhängigkeit der Spaltenvektoren?=
>  
> [mm]M\[/mm] ist genau dann invertierbar, falls die Spaltenvektoren
>  linear unabhängig sind (Ist das nicht klar?).

Genau das ist doch die Aufgabe, zu zeigen?
Ich kann da nur mittels Rank,Dimension argumentieren und das will ich gerade nicht!

lg


Bezug
                                        
Bezug
Invertierbar, Spalten l.u.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mo 03.11.2014
Autor: DieAcht


> Genau das ist doch die Aufgabe, zu zeigen?
> Ich kann da nur mittels Rank,Dimension argumentieren und
> das will ich gerade nicht!

Zu zeigen ist: Ist [mm] $M\$ [/mm] nicht invertierbar, dann gibt es [mm] (k,\lambda,\mu)\not=(0,0,0) [/mm] mit [mm] \ldots [/mm]

Unter welcher Bedingung ist hier [mm] $M\$ [/mm] nicht invertierbar?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]