www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Invertierb Matrix Nilpot NF
Invertierb Matrix Nilpot NF < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierb Matrix Nilpot NF: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:06 Di 05.11.2013
Autor: mbra771

Aufgabe
Sei [mm] $V=\IR^4$, [/mm] und sei [mm] $f:V\to [/mm] V$ definiert durch $f(v)=A*v$ wobei [mm] A=\pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0&-1&0&0 \\ -2&4&-2&2 } \in M_{44}(\IR) [/mm] ist.


Es handelt sich um eine Beispielaufgabe aus meinem Script. Dabei soll ich die Nilpotente Normalform $N(p)$ von A berechnen und die Matrix S, für die gilt:

[mm] $N(p)=S^{-1}*A*S$ [/mm]

Dabei habe ich fast alle Schritte verstanden und unabhängig vom Script auch gerechnet und alles passte überein. An einem Punkt komme ich aber jetzt leider nicht weiter und kann auch nicht verstehen, warum gerade genau dieser Vektor benutzt wird.
Aber Schritt für Schritt...


Als erstes habe ich [mm] A^0,A, A^2 [/mm] und [mm] A^3 [/mm] berechnet.

[mm] A^0=I_4 [/mm]

[mm] A^1=\pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0&-1&0&0 \\ -2&4&-2&2 } [/mm]

[mm] A^2=\pmat{ 1 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ -1&2&-1&1 \\ 0&0&0&0 } [/mm]

[mm] A^3=0 [/mm]

Dann habe ich die Rangpartition p von A berechnet:
p=(p1,p2,p3) mit:
[mm] p1=Rg(A^0)-Rg(A)=4-2=2 [/mm]
[mm] p2=Rg(A)-Rg(A^2)=2-1=1 [/mm]
[mm] p3=Rg(A^2)-Rg(A^3)=1-0=1 [/mm]

Somit folgt: $p=(2,1,1)$ und die dazu duale Partition $p^*=(3,1)$

Damit erstelle ich [mm] N(p)=\pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0&0&0&0 \\ 0&0&0&0 } [/mm]

Dann habe ich die Filtrierung von V bezüglich A berechnet.
Das Ergebnis hat zu meiner Freude mit meinem Script übereingestimmt und lautet:

[mm] $\{0\}\subseteq \langle \vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle \subseteq \langle \vektor{-2\\-1\\0\\0},\vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle \subseteq [/mm] V$

Bei mir sind die Mengen folgendermaßen benannt:

[mm] $V_0=\{0\}$ [/mm]
[mm] $V_1=\langle \vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle$ [/mm]
[mm] $V_2=\langle \vektor{-2\\-1\\0\\0},\vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle$ [/mm]
[mm] $V_3=V [/mm]

Jetzt suche ich mir einen Vektor, der (und da bin ich mir nicht 100%tig sicher) nicht in [mm] V_2 [/mm] liegen darf, mit dem ich eine Basis von [mm] V_3 [/mm] / [mm] V_2 [/mm] bilden kann.
Es drängte sich hier [mm] v_{13}= \vektor{1\\0\\0\\0} [/mm] auf.

Durch die duale Partition $p^*=(3,1)$ nehme ich [mm] $v_{13} [/mm] *A$ und erhalte [mm] $v_{12}=\vektor{0\\1\\0\\-2}$ [/mm] und mit [mm] $v_{12}*A=v_{13}=\vektor{1\\0\\-1\\0}$ [/mm] erhalte ich meinen nächsten Vektor.

Bis dahin verstehe ich die Vorgehensweise und habe alles unabhängig vom Scrips so gerechnet. Dann werden [mm] $v_{11},v_{12},v_{13}$ [/mm] durch einen weiteren Vektor zu einer Basis von V ergänzt.
Da S ja nun invertierbar ist, muss Rg(S)=4 sein, um auf vier linear unabhängige Vektoren zu kommen, fehlt mir also nur noch ein einziger. Ich hätte jetzt:

[mm] \vektor{0\\0\\0\\1} [/mm] genommen.

Im Script wird [mm] $v_{21}=\vektor{0\\0\\1\\1}$ [/mm] genutzt und ich verstehe nicht warum!

Wäre schön, wenn mir das jemand erklären könnte. Hab das Script jetzt schon einige male gelesen, komme aber leider nicht dahinter.
Micha

        
Bezug
Invertierb Matrix Nilpot NF: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 07.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]