www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Inverse mit Modulo
Inverse mit Modulo < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse mit Modulo: Übung
Status: (Frage) beantwortet Status 
Datum: 10:36 Mo 04.11.2013
Autor: ellegance88

Aufgabe
Find the inverses of the following matrices mod N. Write the entries in the inverse Matrix as nonnegative integers less than N.
a)  [mm] \begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix} [/mm] mod 5

Hallo,

habe eine Frage zu dieser Aufgabe.
eine Inverse zu berechnen fällt mir ja nicht schwer. Bei der 2x2 Matrix ist ja die Formel 1/det(A) [mm] \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} [/mm] bloß wie mache ich das mit dem Mod?

Ansatz:

[mm] \bruch{1}{9}\begin{pmatrix} 3 & -3 \\ -4 & 1 \end{pmatrix} [/mm]


Liebe Grüße


        
Bezug
Inverse mit Modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Mo 04.11.2013
Autor: Gonozal_IX

Hiho,

als erste Anmerkung: Deine Berechnung der Determinante ist falsch, so dass bei dir nicht die Einheitsmatrix herauskommt.

Dann: Du sollst die Einträge der Matrix ja als Werte zwischen 0 und 4 darstellen (eben als möglicher Rest beim Teilen durch 5).

Überlege dir also, für welche [mm] $x,y\in\{0,1,2,3,4\}$ [/mm] gilt:

$-3 = x mod 5$ bzw
$-4 = y mod 5$

Tipp: Modulo 5 kannst du beliebig oft 5 addieren, ohne etwas zu ändern, da ja 5=0 mod 5 gilt.

Gruß,
Gono.

Bezug
                
Bezug
Inverse mit Modulo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Mo 04.11.2013
Autor: ellegance88

-3 = x mod 5 bzw
-4 = y mod 5

wenn ich 5 dazu addiere habe ich

-3 = 2 mod 5
-4 = 1 mod 5

und was sollte es mir nun sagen?

habe jetzt die Determinate. die ist -9. in Modulo 5 wäre -9 doch 1 oder?
das heißt das meine Inverse wäre
[mm] \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} [/mm]  oder?

Bezug
                        
Bezug
Inverse mit Modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 04.11.2013
Autor: M.Rex

Hallo

> -3 = x mod 5 bzw
> -4 = y mod 5

>

> wenn ich 5 dazu addiere habe ich

>

> -3 = 2 mod 5
> -4 = 1 mod 5

>

> und was sollte es mir nun sagen?

>

> habe jetzt die Determinate. die ist -9. in Modulo 5 wäre
> -9 doch 1 oder?
> das heißt das meine Inverse wäre
> [mm]\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}[/mm] oder?

So ist es. Mache doch die Probe:

[mm] $\pmat{1&4\\3&3}\cdot\pmat{3&2\\1&1}\stackrel{mod5}{\equiv}\pmat{1&0\\0&1}$ [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]