www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Inverse Matrix berechnen
Inverse Matrix berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 So 17.11.2013
Autor: Smuji

Aufgabe
Zeigen Sie, dass A eine reguläre Matrix ist und bestimmen Sie die Inverse Matrix A ^-1. Das Ergebnis ist anhand der Beziehung A^-1 * A = A * A^-1 = E zu überprüfen.

[mm] \pmat{ 3 & 1 & 4 \\ 0 & 1 & -2 \\ 1 & 2 & 0 } [/mm]

Hallo,

bei dieser Aufgabe kommen mir ein paar Fragen auf.

Meine Vorgehensweise ist:

- Determinant von A ausrechnen = 6 ( detA = 0 singulär  ,  datA ungleich 0 regulär und somit invertierbar.

- dann erzeuge ich 9 Unterdeterminaten und erhalte

[mm] \pmat{ 4 & -2 & -1 \\ 8 & -4 & 5 \\ -6 & 6 & 3 } [/mm]

dann berücksichtige ich die vorzeichen und ändere diese entsprechen (-1)^ik * Dik  oder einfach nach  dem Schachbrettmuster und erhalte

[mm] \pmat{ 4 & 2 & -1 \\ -8 & -4 & -5 \\ -6 & 6 & 3 } [/mm]


danach muss ich das ganze noch transponieren oder auch adjungieren (wo ist da der Unterschied ?)


So erhalte ich [mm] \pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 } [/mm]


Nun lautet die Formel ja A^-1 = [mm] \bruch{1}{detA=6} [/mm] * A adj.


Da wäre ja dann auch die Lösung:

[mm] \bruch{1}{6} [/mm] * [mm] \pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 } [/mm]



Aber

1. beudetet  A adjungiert = A transponiert, mit 9 Unterdeterminaten umgebaut + mit hilfe des algebraischen komplementes die vorzeichen getauscht ?


2.was mache ich nun ? wie verrechne ich die [mm] \bruch{1}{6} [/mm] jetzt mit meinem Aadj. ? Genauso wie eine Matrix mit einem skalar multipliziert wird ?


3. Ich muss ja jetzt laut Aufgabenstellung:

[mm] \pmat{ 3 & 1 & 4 \\ 0 & 1 & -2 \\ 1 & 2 & 0 } [/mm]  *   [mm] \bruch{1}{6} [/mm] * [mm] \pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 } [/mm]   = E  rechnen, nur wie mache ich das ? habe nun schon diverse Schritte durchgeführt und da ich nich auf E komme, weiß ich nicht wie ich was machen muss.


        
Bezug
Inverse Matrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:54 Mo 18.11.2013
Autor: angela.h.b.


> Zeigen Sie, dass A eine reguläre Matrix ist und bestimmen
> Sie die Inverse Matrix A ^-1. Das Ergebnis ist anhand der
> Beziehung A^-1 * A = A * A^-1 = E zu überprüfen.

>

> [mm]\pmat{ 3 & 1 & 4 \\ 0 & 1 & -2 \\ 1 & 2 & 0 }[/mm]
> Hallo,

>

> bei dieser Aufgabe kommen mir ein paar Fragen auf.

>

> Meine Vorgehensweise ist:

>

> - Determinant von A ausrechnen = 6 ( detA = 0 singulär ,
> datA ungleich 0 regulär und somit invertierbar.

Hallo,

ja.

>

> - dann erzeuge ich 9 Unterdeterminaten und erhalte

>

> [mm]\pmat{ 4 & -2 & -1 \\ 8 & -4 & 5 \\ -6 & 6 & 3 }[/mm]

Ja

>

> dann berücksichtige ich die vorzeichen und ändere diese
> entsprechen (-1)^ik * Dik oder einfach nach dem
> Schachbrettmuster und erhalte

>

> [mm]\pmat{ 4 & 2 & -1 \\ -8 & -4 & -5 \\ -6 & 6 & 3 }[/mm]


Ja.
>
>

> danach muss ich das ganze noch transponieren oder auch
> adjungieren (wo ist da der Unterschied ?)

Du mußt es transponieren.
(Beim Adjungieren einer Matrix mit komplexen Einträgen transponiert man und bildet bei jedem Eintrag das konjugiert komplexe.)

>
>

> So erhalte ich [mm]\pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 }[/mm]


>
>

> Nun lautet die Formel ja A^-1 = [mm]\bruch{1}{detA=6}[/mm] * A adj.

>
>

> Da wäre ja dann auch die Lösung:

>
[mm] A^{-1}= [/mm]

> [mm]\bruch{1}{6}[/mm] * [mm]\pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 }[/mm]

Genau.
>
>
>

> Aber

>

> 1. bedeutet A adjungiert = A transponiert, mit 9
> Unterdeterminaten umgebaut + mit hilfe des algebraischen
> komplementes die vorzeichen getauscht ?

Die adjunkte Matrix, welche hier benötigt wird, bekommt man so:
Unterdeterminanten, Schachbrett drauf, transponieren.

Die adjungierte Matrix einer komplexen Matrix ist etwas anderes: transponieren, konjugieren.
>
>

> 2.was mache ich nun ? wie verrechne ich die [mm]\bruch{1}{6}[/mm]
> jetzt mit meinem Aadj. ? Genauso wie eine Matrix mit einem
> skalar multipliziert wird ?

Das kannst Du machen, aber Du kannst es auch so dastehen lassen, wie es ist. Ist ja übersichtlicher.


>
>

> 3. Ich muss ja jetzt laut Aufgabenstellung:

>

> [mm]\pmat{ 3 & 1 & 4 \\ 0 & 1 & -2 \\ 1 & 2 & 0 }[/mm] *
> [mm]\bruch{1}{6}[/mm] * [mm]\pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 }[/mm]
> = E rechnen, nur wie mache ich das ?

Das 1/6 kannst Du nach vorne ziehen, und dann machst Du eine ganz normale Matrizenmultiplikation. Wo ist das Problem?

Es kommt in der Tat die Einheitsmatrix heraus.


Übrigens kannst Du die Inverse Matrix auch mit dem Gauß-Algorithmus bestimmen, was bei größeren Matrizen doch netter ist als das Detrminantengewurschtel.
Du solltest das können.

LG Angela



habe nun schon

> diverse Schritte durchgeführt und da ich nich auf E komme,
> weiß ich nicht wie ich was machen muss.

>

Bezug
                
Bezug
Inverse Matrix berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mo 18.11.2013
Autor: Smuji

danke, ich werde es versuchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]