www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Inverse Matrix
Inverse Matrix < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mo 06.06.2011
Autor: hase-hh

Aufgabe
Die Gesamtkosten eines Betriebes können durch eine Funktion 3.Grades der Form K(x) = [mm] ax^3+bx^2+cx+d [/mm]  beschrieben werden.

Anmerkung: Die Grenzkostenfunktion ist die erste Ableitung von K, d.h. K'(x) = [mm] 3ax^2 [/mm] +2bx +c.


Bei der Produktion von 1 ME (Mengeneinheiten) entstehen Kosten von 58 GE (Geldeinheiten). werden 3 ME hergestellt, dann betragen die Kosten 72 GE und die Grenzkosten 3 GE. Wenn 6 ME produziert werden betragen die Kosten 108 GE.

a) Stellen Sie zur Ermittlung der Gesamtkostenfunktion ein Lineares Gleichungssystem auf.

b) Lösen Sie dieses mit der inversen Matrix.

Moin, moin!

zu a)

K(1) = 58   =>   a+b+c+d = 58

K(3) = 72   =>  27a +9b +3c +d =72

K'(3) = 3    =>  27a +6b + c = 3

K(6) = 108  =>  216a +36b +6c +d =108

Daraus kann ich eine Matrix aufstellen:

[mm] \pmat{ 1 & 1 & 1 & 1 & 58 \\ 27 & 9 & 3 & 1 & 72 \\ 27 & 6 & 1 & 0 & 3 \\ 216 & 36 & 6 & 1 & 108} [/mm]


Schön. Aber wie löse ich das jetzt mit einer Inversen Matrix?

Ist das überhaupt möglich?  Kann ich eine Inverse Matrix nicht nur von quadratischen Matrizen bilden?

Kann ich die "rechte Seite der Gleichungen" möglicherweise in die linke Seite integrieren; sodasseine 4x4 Matrix entsteht???


Wie gehe ich sonst vor?


Vielen Dank für eure Hilfe!

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mo 06.06.2011
Autor: barsch

Hallo,

> zu a)
>
> K(1) = 58   =>   a+b+c+d = 58

>  
> K(3) = 72   =>  27a +9b +3c +d =72

>  
> K'(3) = 3    =>  27a +6b + c = 3

>  
> K(6) = 108  =>  216a +36b +6c +d =108

diesen Teil lasse ich mal ungeprüft, da es dir - wie ich es der Frage entnehme - mehr um den 2. Teil der Aufgabe geht.

> Daraus kann ich eine Matrix aufstellen:
>  
> [mm]\pmat{ 1 & 1 & 1 & 1 & 58 \\ 27 & 9 & 3 & 1 & 72 \\ 27 & 6 & 1 & 0 & 3 \\ 216 & 36 & 6 & 1 & 108}[/mm]

Ja, so ist das zwar korrekt, die Schreibweise bringt dich aber nicht weiter bei deinem Problem.

>
> Schön. Aber wie löse ich das jetzt mit einer Inversen
> Matrix?
>  
> Ist das überhaupt möglich?  Kann ich eine Inverse Matrix
> nicht nur von quadratischen Matrizen bilden?
> Kann ich die "rechte Seite der Gleichungen" möglicherweise
> in die linke Seite integrieren; sodasseine 4x4 Matrix
> entsteht???

Da weiß ich jetzt nicht, was du meinst, aber ich denke, du meinst folgendes:

[mm]\pmat{ 1 & 1 & 1 & 1 \\ 27 & 9 & 3 & 1 \\ 27 & 6 & 1 & 0 \\ 216 & 36 & 6 & 1}\cdot{\vektor{a \\ b \\ c \\ d}}=\vektor{58 \\ 72 \\ 3 \\ 108}[/mm]

Und das ist völlig korrekt. Du hast jetzt also ein LGS der Form [mm]A\cdot{x}=b[/mm]. Ist nun [mm]A[/mm] invertierbar, gilt [mm]x=A^{-1}\cdot{b}[/mm].

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]