www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Inverse Funktion
Inverse Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mi 26.05.2010
Autor: puschel89

Aufgabe
Sei [mm] f:\IR^2 \mapsto \IR^2 [/mm] definiert durch:

f(x) = [mm] \vektor{e^{x_{1}} cos x_2\\ e^{x_{1}} sin x_2} [/mm]

a) Bestimmen Sie f'(x) und zeigen Sie, dass f'(x) für alle x [mm] \in \IR^2 [/mm] invertierbar, f aber nicht injektiv ist.
b) Zeigen Sie für D = [mm] \IR \times (-\pi, \pi), [/mm] dass f: D [mm] \mapsto \IR^2 [/mm] injektiv ist, und bestimmen Sie f(D). Berechnen Sie die inverse Funktion [mm] f^{-1}: [/mm] f(D) [mm] \mapsto [/mm] D und deren Ableitung.

Hallo,

ich habe mal wieder ein Problem mit einer Aufgabe.
Teil a) habe ich noch einigermaßen problemlos hinbekommen, auch der 1. Teil von b), die Injektivität zu zeigen, war vergleichsweise einfach - vorausgesetzt es ist richtig.^^

Jetzt scheitere ich allerdings bei der Berechnung von f(D), da mir die Schreibweise [mm] \IR \times (-\pi, \pi) [/mm] nicht sehr viel sagt. Ich dachte es bedeutet einfach, dass ich die Funktion einfach in dem Intervall betachten muss, aber wie ich da jetzt was berechnen soll ist mir schleierhaft.

Wäre nett, wenn mir jemand helfen könnte. :)

        
Bezug
Inverse Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 27.05.2010
Autor: fred97


> Sei [mm]f:\IR^2 \mapsto \IR^2[/mm] definiert durch:
>  
> f(x) = [mm]\vektor{e^{x_{1}} cos x_2\\ e^{x_{1}} sin x_2}[/mm]
>  
> a) Bestimmen Sie f'(x) und zeigen Sie, dass f'(x) für alle
> x [mm]\in \IR^2[/mm] invertierbar, f aber nicht injektiv ist.
>  b) Zeigen Sie für D = [mm]\IR \times (-\pi, \pi),[/mm] dass f: D
> [mm]\mapsto \IR^2[/mm] injektiv ist, und bestimmen Sie f(D).
> Berechnen Sie die inverse Funktion [mm]f^{-1}:[/mm] f(D) [mm]\mapsto[/mm] D
> und deren Ableitung.
>  Hallo,
>  
> ich habe mal wieder ein Problem mit einer Aufgabe.
>  Teil a) habe ich noch einigermaßen problemlos
> hinbekommen, auch der 1. Teil von b), die Injektivität zu
> zeigen, war vergleichsweise einfach - vorausgesetzt es ist
> richtig.^^
>  
> Jetzt scheitere ich allerdings bei der Berechnung von f(D),
> da mir die Schreibweise [mm]\IR \times (-\pi, \pi)[/mm] nicht sehr
> viel sagt.


Merkwürdig !!!!   Wie hast Du dann die Injektivität auf D hinbekommen ????

[mm]\IR \times (-\pi, \pi)= \{(x_1,x_2) \in \IR^2: x_2 \in (-\pi, \pi) \}[/mm]

FRED


> Ich dachte es bedeutet einfach, dass ich die
> Funktion einfach in dem Intervall betachten muss, aber wie
> ich da jetzt was berechnen soll ist mir schleierhaft.
>  
> Wäre nett, wenn mir jemand helfen könnte. :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]