www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Intervallschachtelung zeigen
Intervallschachtelung zeigen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallschachtelung zeigen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 14.11.2006
Autor: Planlos

Aufgabe
Sei 0<a<b. Man definiere induktiv [mm] a_{1}:= [/mm] a, [mm] b_{1}:= [/mm] b sowie [mm] a_{n+1} [/mm] := [mm] H(a_{n},b_{n}), b_{n+1}:= A(a_{n},b_{n}) [/mm] dabei ist H bzw. A das harmonische bzw. arithmetische Mittel.
Man zeige: [mm] [a_{n},b_{n}] [/mm] liefert eine Intervallschachtelung um G(a,b) = [mm] \wurzel{a\cdot b} [/mm] (G geometrisches Mittel).

Ich verstehe bei dieser Aufgabe so gut wie gar nichts, außer dass man sich am Anfang wohl das Intervall [a,b] anschaut. Wie aber soll mich das zur Intervallschachtelung führen??
Es wäre klasse, wenn ihr mir ein paar Denkanstöße geben könntet.

        
Bezug
Intervallschachtelung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 14.11.2006
Autor: Walde

hi Planlos,

genau, du startest mit [mm] [a_1;b_1] [/mm] und [mm] a_1=a [/mm] und [mm] b_1=b. [/mm]

Als nächstes nimmst du [mm] [a_2;b_2] [/mm] mit [mm] a_2=[/mm]  []harmonisches Mittel von [mm] a_1 [/mm] und [mm] b_2 [/mm] , d.h.

[mm] a_2=\bruch{2}{\bruch{1}{a_1}+\bruch{1}{b_1}} [/mm]

und [mm] b_2= [/mm] arithmetisches Mittel, d.h. [mm] b_2=\bruch{a_1+b_1}{2} [/mm]

als nächstes nimmst du [mm] [a_3;b_3] [/mm] mit [mm] a_3 [/mm] wieder dem harm. Mittel, diesmal von [mm] a_2 [/mm] und [mm] b_2 [/mm] , also [mm] a_3=\bruch{2}{\bruch{1}{a_2}+\bruch{1}{b_2}} [/mm] und so weiter.

Zeigen sollst du, dass sich die Intervallgrenzen von beiden Seiten immer mehr dem geometrischen Mittel [mm] (=\wurzel{a*b}) [/mm] von a und b nähern. Die Grenzen [mm] a_n [/mm] und [mm] b_n [/mm] sind ja zwei Zahlenfolgen, die womöglich beide [mm] \wurzel{a*b} [/mm] als Grenzwert haben, aber ich habs jetzt nicht weiter verfolgt, ist nur so ne Idee. Du müsstest wohl zeigen, dass die rechte Intervallgrenze immer kleiner wird, aber nie kleiner als [mm] (\wurzel{a*b}), [/mm] also quasi dagegen konvergiert (monoton und beschränkt, ich hoffe da klingelts bei dir ;-) ). Analog mit der linken Grenze.

Ich hoffe, das hilft dir weiter.

L G walde



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]