www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Interpretation einer Steigung
Interpretation einer Steigung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpretation einer Steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 01.11.2007
Autor: lexxy

Hallo,

ich wiederhole gerade wieder Grundwissen in Mathe. Nun haben wir vor kurzen eine Stegreifaufgabe geschrieben, in der von Steigungen und Steigungsdreiecken die Rede war. Leider habe ich ein kleines Problem solche zu Interpretieren.

Ich habe über einen Funktionsplotter im Internet eine Steigung nach der Angabe auf dem Lösungsblatt erstellt.
Die vorgegebene Steigung (auf dem Bild rot markiert) ist [mm] -\bruch{2}{5}x [/mm]
Meine Interpretation (auf dem Bild blau markiert) war allerdings [mm] -\bruch{1}{2,5}x [/mm]

[Dateianhang nicht öffentlich]

Nun weicht das natürlich von der Musterlösung ab, allerdings komme ich nicht dahinter aus welchem Grund das so ist. Gibt es da irgendein Gesetz das mir sagt an welcher Stelle ich anfangen soll mit dem Steigungsdreieck und an welcher ich aufhören soll (z. B. wie auf dem Beispiel bei Y-Schnittpunkt anfangen und bei X-Schnittpunkt aufhören)? Warum ist meine Version falsch?

Danke für jede Antwort!

PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Interpretation einer Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Do 01.11.2007
Autor: Zwerglein

Hi, lexxy,

> ich wiederhole gerade wieder Grundwissen in Mathe. Nun
> haben wir vor kurzen eine Stegreifaufgabe geschrieben, in
> der von Steigungen und Steigungsdreiecken die Rede war.
> Leider habe ich ein kleines Problem solche zu
> Interpretieren.
>
> Ich habe über einen Funktionsplotter im Internet eine
> Steigung nach der Angabe auf dem Lösungsblatt erstellt.
> Die vorgegebene Steigung (auf dem Bild rot markiert) ist
> [mm]-\bruch{2}{5}x[/mm]
> Meine Interpretation (auf dem Bild blau markiert) war
> allerdings [mm]-\bruch{1}{2,5}x[/mm]

  

> Nun weicht das natürlich von der Musterlösung ab,

Tut es NICHT !!
Tipp's mal in den Taschenrechner ein und Du wirst erkennen:
[mm] \bruch{2}{5} [/mm] = 0,4
und
[mm] \bruch{1}{2,5} [/mm] = 0,4

Ergo: DAS IST DASSELBE!

Nun aber etwas zur "Frage der Ästhetik":
Einen Bruch wie [mm] \bruch{1}{2,5} [/mm]
lässt man natürlich nicht stehen: POTTHÄSSLICH (wegen der Kommazahl im Nenner!)
Daher erweitert man, sodass im Zähler und im Nenner ganze Zahlen stehen:
[mm] \bruch{1*\red{2}}{2,5*\red{2}} [/mm] = [mm] \bruch{2}{5} [/mm]

Alles klar?

mfG!
Zwerglein

PS: Die Steigung Deiner Geraden (siehe oben) ist natürlich NICHT
[mm]-\bruch{2}{5}\red{x}[/mm]
sondern NUR [mm]-\bruch{2}{5}[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]