www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Interpolationsschema nach Newt
Interpolationsschema nach Newt < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolationsschema nach Newt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Sa 02.02.2008
Autor: hasso

Guten abend,

Ich hab eine frage in bezug auf .. Wie lautet die Kostenfunktion:
[mm] K(x)=ax^3 +bx^2 [/mm] cx +d

x      10 | 15   | 20  | 25
K(x)  2700 |3475|5700|10125

1)2700  = 1000 +100 +10 +d
2)3475  = 3375 +225 +15 +d
3)5700  = 8000 +400 +20 +d
4)10125=15625+625 + 25+d

Zu lösen ist ein 4x4 LGS Es ist mit dem Gaufverfahren möglich und Determiante möglich. nur die nehmen zu viel Zeit in anspruch deswegen wollt ich das mit dem Interpolationschema nach newton mal versuchen . ich weiß wie es ausieht weiß aber nicht wie es funktioniert kennt das jemand'?? und wär so lieb und erklärt mir das ...


[Dateianhang nicht öffentlich]








lg hasso

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Sa 02.02.2008
Autor: max3000

Wäre es nicht klüger einfach mal bei google nach "newton interpolation" oder "dividierte differenzen" zu suchen?

Bei dem Shema nimmst du eigentlich die Zahl links darunter minus die links darüber geteilt durch die Differenz der entsprechenden Stützstellen.

Das ganze ist etwas schwer zu erklären, da es auch in jeder Literatur anders beschrieben wird. Allgemein wird das mit folgender Rekursionsformel gemacht:

[mm] f[x_k]=K(x_k) [/mm]
[mm] f[x_k,\ldots,x_l]=\bruch{f[x_{k+1},\ldots,x_l]-f[x_k,\ldots,x_{l-1}]}{x_l-x_k} [/mm]

Ich hoffe du hast das in etwa verstanden.
Kommt sowas wirklich schon in der Schule dran oder haste dich vielleicht im forum vertan?

Gruß
Max

Bezug
                
Bezug
Interpolationsschema nach Newt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:00 Sa 02.02.2008
Autor: hasso

Hallo danke erstmal!

ich muss das noch verbessern hab schon mit studium begonnen..

auf wiki ist das ja nicht einfach erklärt ohne zahlenbeispiel..ich bin auf doe 155, 455, 855 gekommen ist ja eigentl. pipi hehe.. aber auf die 29, 44,1 komm ich irgendwie nicht wenn ich die differnz der zahlen nehme und mit dem selben schema weiter rechne ...
warum?


lg hasso

Bezug
                        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Sa 02.02.2008
Autor: vwxyz

Das Problem ist das in dem Shema ein falscher Wert steht.
Beim Newton Interpolationsshema gilt:


[mm] x_{0} [/mm] = 10  [mm] y_{0,0} [/mm] = 2700
                     [mm] y_{0,1} [/mm] = [mm] \bruch{y_{1,1}-y_{0,0}}{x_{1}-x_{0}} [/mm] = [mm] \bruch{3475-2700}{15-10} [/mm]  =  [mm] \bruch{775}{5}= [/mm] 155  
[mm] x_{1} [/mm] = 15  [mm] y_{1,1} [/mm] = 3475
                     [mm] y_{1,2} [/mm] = [mm] \bruch{y_{2,2}-y_{1,1}}{x_{2}-x_{1}} [/mm] = [mm] \bruch{5700-3475}{20-15} [/mm]  = [mm] \bruch{2225}{5}= [/mm] 445  
[mm] x_{2} [/mm] = 20  [mm] y_{2,2} [/mm] = 5700
                     [mm] y_{2,3} [/mm] = [mm] \bruch{y_{3,3}-y_{2,2}}{x_{3}-x_{2}} [/mm] = [mm] \bruch{10125-5700}{25-20} [/mm]  = [mm] \bruch{4425}{5}= [/mm] 885  
[mm] x_{3} [/mm] = 25  [mm] y_{3,3} [/mm] = 10125

Wenn du nun weiterrechnest kommt ergibt sich:

[mm] y_{0,2} [/mm] = [mm] \bruch{y_{1,2}-y_{0,1}}{x_{2}-x_{1}} [/mm] = [mm] \bruch{445-155}{20-10} [/mm]  =  [mm] \bruch{290}{10}= [/mm] 29
                                   [mm] y_{0,3} [/mm] = [mm] \bruch{y_{0,2}-y_{1,3}}{x_{3}-x_{0}} [/mm] = [mm] \bruch{44-29}{25-10} [/mm]  =  [mm] \bruch{15}{15}= [/mm] 1
[mm] y_{1,3} [/mm] = [mm] \bruch{y_{2,3}-y_{1,2}}{x_{3}-x_{1}} [/mm] = [mm] \bruch{885-445}{25-15} [/mm]  =  [mm] \bruch{440}{10}= [/mm] 44

Und dann stimmt das soweit mit den Werten.

Bezug
                        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 02.02.2008
Autor: Steffi21

Hallo, gehe mal auf diese []Seite, dort ist ein komplettes Beispiel berechnet, du mußt aber noch berechnen

2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20)

du bekommst dann
a=1
b=-16
c=80
d=2500

[a]Datei-Anhang

Steffi




Dateianhänge:
Anhang Nr. 1 (Typ: xls) [nicht öffentlich]
Bezug
                                
Bezug
Interpolationsschema nach Newt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 So 03.02.2008
Autor: hasso

Hallo, Steffi

Das Ergebnis ist 100% richtig das steht auch in mein Heft so .. nur ich krieg einfach nicht raus wie du die Werte erchnet hast ich hab versucht die klammern aufzulösen geht nicht oder irgendwie in die kostenunktion einzusetzen .. echt null ahnung davon kannst du mir das mal bitte erklären ??


> dort ist ein komplettes Beispiel berechnet, du mußt aber
> noch berechnen
>  
> 2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20)
>  
> du bekommst dann
> a=1
>  b=-16
>  c=80
>  d=2500



lg hasso


Bezug
                                        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 So 03.02.2008
Autor: MathePower

Hallo hasso,

> Hallo, Steffi
>  
> Das Ergebnis ist 100% richtig das steht auch in mein Heft
> so .. nur ich krieg einfach nicht raus wie du die Werte
> erchnet hast ich hab versucht die klammern aufzulösen geht
> nicht oder irgendwie in die kostenunktion einzusetzen ..
> echt null ahnung davon kannst du mir das mal bitte erklären
> ??

Durch ausmultiplizieren und anschließendes sortieren nach x-Potenzen ist Steffi darauf gekommen.

Gruß
MathePower

Bezug
                                                
Bezug
Interpolationsschema nach Newt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 So 03.02.2008
Autor: hasso

hallo,

ich hab das ja schon versucht klappt nicht so ganz..ein beispiel würd sicherlich helfen.



gruß Hasso

Bezug
                                                        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 03.02.2008
Autor: vwxyz

Du hast nun die Gleichung:
2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20)

Die musst du nun ausmultiplizieren:

2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20) [mm] =x^{3}-16*x^{2}+80*x+2500 [/mm]

Die einzelnen Koefizienten sind die Werte für a,b,c und d

Die allgemeine Form war:

[mm] ax^{3}+bx^{2}+cx+d [/mm]

Bei unserem Beispiel ist die ausmultiplizierte Form:
[mm] \underbrace{1}_{=a}*x^{3}+\underbrace{(-16)}_{=b}*x^{2}+\underbrace{80}_{c}*x+\underbrace{2500}_{=d} [/mm]

Bezug
                                                                
Bezug
Interpolationsschema nach Newt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 So 03.02.2008
Autor: hasso


> Du hast nun die Gleichung:
>  2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20)
>  
> Die musst du nun ausmultiplizieren:
>  
> 2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20)
> [mm]=x^{3}-16*x^{2}+80*x+2500[/mm]
>  
> Die einzelnen Koefizienten sind die Werte für a,b,c und d
>  
> Die allgemeine Form war:
>  
> [mm]ax^{3}+bx^{2}+cx+d[/mm]
>  
> Bei unserem Beispiel ist die ausmultiplizierte Form:
>  
> [mm]\underbrace{1}_{=a}*x^{3}+\underbrace{(-16)}_{=b}*x^{2}+\underbrace{80}_{c}*x+\underbrace{2500}_{=d}[/mm]

ích weiß ja wie die form ausieht nur wie man das ausmultipliziert raff ich nicht so ganz soweit eigentlich macht man ja155 (x-10)=155x +1550 und dann nach x auflösen.

gruß hasso


Bezug
                                                                        
Bezug
Interpolationsschema nach Newt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 So 03.02.2008
Autor: vwxyz

Die komplete Ausmultiplikation der Gleichung ist:

2700+155(x-10)+29(x-10)(x-15)+1(x-10)(x-15)(x-20) = 2700 + 155x [mm] +155*(-10)+29*(x^{2}-10*x-15*x+10*15) +1*(x^{2}-10*x-15*x+10*15)*(x-20) [/mm] = [mm] 2700+155*x-1550+29*(x^{2}-25*x+150)+1*(x^{2}-25*x+150)*(x-20) [/mm] = [mm] 1150+155x+29*x^{2}-725*x+4350+(x^{2}*x-25*x*x+150*x+x^{2}*(-20)-25*x*(-20)+150*(-20))= 5500+155x+29x^{2}-725*x+(x^{3}-45x^{2}+650x-3000) [/mm] = [mm] 8600-570x+29x^{2}+x^{3}-45x^{2}+350x-3000 [/mm] = [mm] 2500+80x-16x^{2}+x^{3} [/mm] = [mm] x^{3}-16x^{2}+80x+2500 [/mm]

hoffe das ist datailiert genug für dich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]