www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Interpolationsfehler Lagrange
Interpolationsfehler Lagrange < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolationsfehler Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 18.07.2016
Autor: Mathe-Lily

Aufgabe
Sei [mm] f \in C^{n+1}([a,b]) [/mm] und es gelte [mm] f(x_i)=y_i (i=0,...,n) [/mm]. Für die Lösung p [mm] \in P_r [/mm] der Lagrange-Interpolationsaufgabe und jedes [mm] x \in [a,b] [/mm] existiert dann ein [mm] \phi \in [/mm] [a,b], sodass gilt:

[mm] f(x)-p(x) = \bruch{f^{(n+1)}(\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j) [/mm].

Für den Interpolationsfehler gilt [mm] ||f-p||_{C^0([a,b])} \le \bruch{||f^{(n+1)}||_{C^0([a,b])}}{(n+1)!} (b-a)^{n+1} [/mm]

Hallo!

Ich verstehe noch nicht, wie man auf die Abschätzung kommt.

Die linke Seite: Man nimmt durch diese Norm den größten Punkt, der durch f-p erreicht werden kann, damit die Abschätzung später nicht verfälscht wird.

Die rechte Seite: Warum man dann auch hier den größten Punkt der (n+1)-ten Ableitung von f nimmt, verstehe ich nicht.
Und woher kommt der letzte Faktor?

Kann mir hierbei jemand helfen?

Liebe Grüße,
Lily

        
Bezug
Interpolationsfehler Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 18.07.2016
Autor: Gonozal_IX

Hiho,

schreibe mal die Definition der [mm] $C^0$-Norm [/mm] explizit hin.

Wende dann $ f(x)-p(x) = [mm] \bruch{f^{(n+1)}(\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j) [/mm] $ an und bedenke, dass trivialerweise [mm] $|x-x_j| \le [/mm] (b-a)$ gilt.

Gruß,
Gono

Bezug
                
Bezug
Interpolationsfehler Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Di 19.07.2016
Autor: Mathe-Lily

Aha!

[mm] ||f||_{C^0(I)}=max_{x \in I} |f(x)| [/mm]

Also so?

[mm] ||f-p||_{C^0([a,b])} = || \bruch{f^{(n+1)}(\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} = \bruch{1}{(n+1)!} || f^{(n+1)}(\phi) \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} \le \bruch{1}{(n+1)!} || f^{(n+1)}(\phi)||_{C^0([a,b])} || \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} = \bruch{1}{(n+1)!} || f^{(n+1)}(\phi)||_{C^0([a,b])} || (b-a)^{n+1} [/mm]

Liebe Grüße,
Lily

Bezug
                        
Bezug
Interpolationsfehler Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Di 19.07.2016
Autor: Mathe-Lily

Irgendwie scheinen die Codes, die ich sonst verwende nicht zu funktionieren :-/

Weiß jemand warum? So ist das ja recht unübersichtlich...

Bezug
                                
Bezug
Interpolationsfehler Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Di 19.07.2016
Autor: Gonozal_IX

Hiho,

die Umwandlung von Code-Eingaben in Formeln ist aktuell defekt. Ist nur ein temporäres Problem… ich beantworte deine Frage aber trotzdem.

Gruß,
Gono

Bezug
                        
Bezug
Interpolationsfehler Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 19.07.2016
Autor: Gonozal_IX

Hiho,
> [mm]||f||_{C^0(I)}=max_{x \in I} |f(x)|[/mm]

[ok]
  

> Also so?
>  
> [mm]||f-p||_{C^0([a,b])} = || \bruch{f^{(n+1)}(\phi)}{(n+1)!} \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} = \bruch{1}{(n+1)!} || f^{(n+1)}(\phi) \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} \le \bruch{1}{(n+1)!} || f^{(n+1)}(\phi)||_{C^0([a,b])} || \produkt_{j=0}^{n} (x-x_j)||_{C^0([a,b])} = \bruch{1}{(n+1)!} || f^{(n+1)}(\phi)||_{C^0([a,b])} || (b-a)^{n+1}[/mm]

die Idee hast du verstanden, der Aufschrieb ist allerdings grottig.
Du schreibst pauschal immer "=" obwohl das schon beim ersten Gleichheitszeichen keinen Sinn macht.

Mach dir auch mal klar: du willst gar nicht Gleichheit zeigen, es reicht dir [mm] $\le$ [/mm] zu zeigen. Mach dir auch klar, warum eben NICHT "=" gilt, sondern oftmals nur [mm] "$\le$". [/mm]

Desweiteren gibt es keine Schreibweise, in der man das Funktionsargument in der [mm] $C^0$-Norm [/mm] angibt.
Wieso verwendest du nicht SAUBER die Definition, dann passiert dir sowas nicht?

Gruß,
Gono

Bezug
                                
Bezug
Interpolationsfehler Lagrange: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 Di 19.07.2016
Autor: Mathe-Lily

Ok, vielen Dank! Ich werde in Zukunft besser darauf achten! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]