Interpolation Exponentialfunkt < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:16 Sa 25.02.2006 | Autor: | Matrim |
Hallo,
ich habe verschiedene gemessene Punkte, welche theoretische durch eine Exponentialfunktion der Form f(x) = a + b*e^(c*x) modelliert werden können.
Gibt es nun eine Möglichkeit der Interpolation von zusätzlichen Werten, welche z.B. diese Modellerfunktion ausnutzt?
Danke im Voraus, Mat.
PS: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=52575
|
|
|
|
Hallo Matrim,
So wie ich das auf dem Matheplaneten gesehen habe hast Du Paare:
( [mm] y_i [/mm] , [mm] x_i [/mm] ) und willst Regression machen? Also die Werte a,b,c finden die am Besten zu diesen Werten passen.
Das Ganze ist nichtlinear in den Parametern und das ist ja häßlich
Die Ableitung ist ja f'(x)=b*c*e^(c*x) . Wenn man davon noch den ln nimmt ergibt sich ln(f'(x))=ln(bc)+cx und mit d=ln(bc)
ln(f'(x))=d+cx
Damit kann man lin. Regression machen und so b,c herausbekommen.
Also würde ich folgendermaßen vorgehen:
Bilde [mm] \bruch{y_{i+1}-y_i}{x_{i+1}-x_i}
[/mm]
Das ist eine Näherung für die Ableitung an der Stelle [mm] \bruch{x_{i+1}+x_i}{2} [/mm]
Bilde [mm] z_i=ln(\bruch{y_{i+1}-y_i}{x_{i+1}-x_i}) [/mm]
Damit bekommst Du die neuen Werte für die Modellfunktion z=d+cx
[mm] (z_i [/mm] , [mm] \bruch{x_{i+1}+x_i}{2})
[/mm]
Das a kannst Du nun herausbekommen indem Du von den Ausgangswerten [mm] be^{cx_i} [/mm] abziehst und einfach mittelst.
Wenn Du es noch genauer brauchst müsstest Du hieran nichtlineare Regression anschließen.
Aber Du kanns es ja erstmal ausprobieren und draufschauen oder wofür brauchst Du das?
viele Grüße
mathemaduenn
|
|
|
|