www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integrieren durch Substitution
Integrieren durch Substitution < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren durch Substitution: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:10 Mi 10.08.2005
Autor: Outside

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo an alle!
Ich habe volgende Aufgabe bei der ich irgendwie nicht weiter komme.

[mm] \integral {\bruch{\wurzel{4-x^{2}}}{x^2} dx} [/mm]

Sie soll durch eine geeignete Substitution gelöst werden. Also:
Sub: x=2 sin(u)   dx=cos(u) du       [mm] \wurzel{4-2sin^2(u)}=2cos(u) [/mm]

Jetzt muss ich doch für alle x in meiner gleichung 2sin(u) einsetzen und die Gleichung mal cos(u)du nehmen, richtig?
[mm] \integral {\bruch{\wurzel{4-2sin^{2}(u)}*cos(u)}{4sin^2(u)} du}=\integral{\bruch{cos^2(u)}{2*sin^2(u)}} [/mm]
Und was nun? Muss ich für [mm] cos^2(u) [/mm] dann 1-cos(2u) schreiben? Was bring mir das, oder muss man das anders machen als wie ich es verstanden habe?

        
Bezug
Integrieren durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 10.08.2005
Autor: Britta82

Hallo Christian

erst einmal hast du da einen kleinen Rechenfehler in deiner Aufgabe, denn x²= 4 sin²(u), wenn du das einsetzt bekommst du als Lösung

[mm] \integral [/mm] 2 cos(u)*cos(u)/2sin²(u) du, die 2 kürzt sich also bleibt dir
[mm] \integral [/mm] cos²(u)/sin²(u) also [mm] \integral [/mm] cot²(u)du, für den Cotangens gilt die Formel: [mm] \integral [/mm] cot (x)dx = log(sin(x)) + C.

Ich hoffe, daß dir das hilft

Britta

Bezug
                
Bezug
Integrieren durch Substitution: konstante Faktoren überprüfen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Mi 10.08.2005
Autor: Leopold_Gast

Ich denke, Outside sollte alle konstanten Faktoren noch einmal überprüfen. So gilt z.B. auch [mm]\mathrm{d}x = 2 \cos{u} \, \mathrm{d}u[/mm]. Und zur Lösung von

[mm]\int_{}^{}~\cot^2{u}~\mathrm{d}u[/mm]

sollte man

[mm]\frac{\mathrm{d}}{\mathrm{d}u} \, \cot{u} = -1 - \cot^2{u}[/mm]

beachten, nach [mm]\cot^2{u}[/mm] auflösen und oben einsetzen.

Bezug
                        
Bezug
Integrieren durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Mi 10.08.2005
Autor: Britta82

Hi,

du hast recht, habe die Faktoren einfach mal als richtig angenommen und nicht weiterbeachtet.

Danke

Britta

Bezug
                
Bezug
Integrieren durch Substitution: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 10.08.2005
Autor: Outside

Erstmal vielen dank für die hilfe. Hat mir schon sehr geholfen.

Ich komm irgendwie immernoch nicht zum richtigen Ergebniss.
So siehts bei mir momentan aus:

[mm] \integral{cot^2u}du=\integral{-cot(u)-1} du=-ln(sin(u))-u+C=-ln(sin(u))-arcsin(\bruch{x}{2})+C [/mm]

Dabei hab ich x=2*sin(u) umgestellt nach u ( u=arcsin(x/2)!
Im ersten term bekomm ich dann ja [mm] -ln(\bruch{x}{2}) [/mm] ...das stimmt aber nicht. Ich muss dort auf [mm] -\bruch{\wurzel{4-x^2}}{x} [/mm] kommen sagt mir die Lösung.

Bezug
                        
Bezug
Integrieren durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mi 10.08.2005
Autor: Britta82

Hi,

wende doch einfach mal die formel an und bedenke das cot² eine Verkettung ist, also die Regeln beachten und dann kommst du auf dein Ergebnis.

außerdem mußt du noch bedenken, daß dir ja ein kleiner fehler bei der Umformung nach du passiert ist, du hast also  [mm] \integral [/mm] 2cot"(u) du, aber die 2 kannst du ja einfach vor das Intergral schreiben

Viel Erfolg

Britta

Bezug
                        
Bezug
Integrieren durch Substitution: genau hingucken
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 10.08.2005
Autor: matrinx

Hallo!
Schau Dir nochmal genau die Formel von Leopold an

[mm]\bruch{d}{du}cot(u) = -1 - cot^{2}(u)[/mm]

da steht ein [mm]\bruch{d}{du}cot(u)[/mm] und nicht nur [mm]cot(u)[/mm].

Überleg Dir dann mal was
[mm] \integral_{}^{} {\bruch{d}{du}cot(u) du} [/mm] bedeutet und dann müsste die Aufgabe eigentlich erschlagen sein.
Grüsse
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]