www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrieren
Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 24.01.2011
Autor: Geddon

Hi,

ich hab noch weiter Aufgaben.

[mm] \integral_{}^{}{\bruch{sin(x)}{e^{x}} dx} [/mm]

= [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm]

u = sin(x)
v' = [mm] e^{-x} [/mm]

[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm] = [mm] sin(x)*(-e^{-x}) [/mm] - [mm] \integral_{}^{}{cos(x)*(-e^{-x}) dx} [/mm]

[mm] sin(x)*(-e^{-x}) [/mm] = [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm] + [mm] \integral_{}^{}{cos(x)*(-e^{-x}) dx} [/mm]

Kann ich hier was zusammenfassen?

Gruß
Geddon

        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mo 24.01.2011
Autor: Steffi21

Hallo

[mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)*e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx} [/mm] ist korrekt

jetzt mache erneut partielle Integration mit [mm] \integral_{}^{}{cos(x)*e^{-x}dx} [/mm] dann den gleichen "Trick", wie in deiner anderen Aufgabe

Steffi

Bezug
                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 24.01.2011
Autor: Geddon

Hi,

wie kommst du denn auf
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $ ?

oder ist das gleich mit meiner Lösung?
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx} [/mm] $ = $ [mm] sin(x)\cdot{}(-e^{-x}) [/mm] $ - $ [mm] \integral_{}^{}{cos(x)\cdot{}(-e^{-x}) dx} [/mm] $
------
[mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] = -cos(x) [mm] e^{-x} [/mm] - [mm] \integral_{}^{}{-sin(x)*(-e^{-x})dx} [/mm]

-cos(x) [mm] e^{-x} [/mm] = [mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] + [mm] \integral_{}^{}{-sin(x)*(-e^{-x})dx} [/mm]

das bringt mich auch nicht weiter

Gruß
Geddon

Bezug
                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mo 24.01.2011
Autor: Steffi21

Hallo, deine und meine Lösung sind gleich, im 1. Summanden habe ich das minus vorgezogen, im 2. Summanden habe ich das minus aus dem Integral gezogen,

[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx} [/mm]

jetzt

u=cos(x)
u'=-sin(x)
[mm] v'=e^{-x} [/mm]
[mm] v=-e^{-x} [/mm]

[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}] [/mm]

[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm]

jetzt addiere auf beiden Seiten der Gleichung [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}, [/mm] teile dann durch 2

Steffi

Bezug
                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mo 24.01.2011
Autor: Geddon

Hi,

> Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> habe ich das minus vorgezogen, im 2. Summanden habe ich das
> minus aus dem Integral gezogen,
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>  
> jetzt
>  
> u=cos(x)
>  u'=-sin(x)
>  [mm]v'=e^{-x}[/mm]
>  [mm]v=-e^{-x}[/mm]
>  
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]

Was hast du hier gemacht?
Sieht so aus als hättest du $- [mm] \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx} [/mm] $ ersetzt.. nur mit was und woher?
  

> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>  
> jetzt addiere auf beiden Seiten der Gleichung
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>  
> Steffi



Gruß
Geddon

Bezug
                                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 24.01.2011
Autor: schachuzipus

Hallo Geddon,


> Hi,
>  
> > Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> > habe ich das minus vorgezogen, im 2. Summanden habe ich das
> > minus aus dem Integral gezogen,
> >
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>  
> >  

> > jetzt
>  >  
> > u=cos(x)
>  >  u'=-sin(x)
>  >  [mm]v'=e^{-x}[/mm]
>  >  [mm]v=-e^{-x}[/mm]
>  >  
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>  
> Was hast du hier gemacht?
>  Sieht so aus als hättest du [mm]- \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}[/mm]
> ersetzt.. nur mit was und woher?

Was meinst du mit ersetzt?

Steffi hat lediglich die beiden "-" unter dem Integral zu einem "+" zusammengefasst ...

Das "-" vor dem Integral bleibt.


>    
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>  
> >  

> > jetzt addiere auf beiden Seiten der Gleichung
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>  >  
> > Steffi
>
>
>
> Gruß
>  Geddon

LG

schachuzipus


Bezug
                                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mo 24.01.2011
Autor: Geddon

Hi,

ich mein wenn ich bei
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $
partiell inegriere komm ich auf
$ [mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $ = -cos(x) $ [mm] e^{-x} [/mm] $ - $ [mm] \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx} [/mm] $
und Steffi auf
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)\cdot{}e^{-x}-\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}] [/mm] $
sieht doch so aus als ob da was eingesetzt wurde

> Hallo Geddon,
>  
>
> > Hi,
>  >  
> > > Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> > > habe ich das minus vorgezogen, im 2. Summanden habe ich das
> > > minus aus dem Integral gezogen,
> > >
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>  
> >  

> > >  

> > > jetzt
>  >  >  
> > > u=cos(x)
>  >  >  u'=-sin(x)
>  >  >  [mm]v'=e^{-x}[/mm]
>  >  >  [mm]v=-e^{-x}[/mm]
>  >  >  
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>  
> >  

> > Was hast du hier gemacht?
>  >  Sieht so aus als hättest du [mm]- \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}[/mm]
> > ersetzt.. nur mit was und woher?
>  
> Was meinst du mit ersetzt?
>  
> Steffi hat lediglich die beiden "-" unter dem Integral zu
> einem "+" zusammengefasst ...
>  
> Das "-" vor dem Integral bleibt.
>  
>
> >    

> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>  
> >  

> > >  

> > > jetzt addiere auf beiden Seiten der Gleichung
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>  >  >  
> > > Steffi
> >
> >
> >
> > Gruß
>  >  Geddon
>
> LG
>  
> schachuzipus
>  


Bezug
                                                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 24.01.2011
Autor: schachuzipus

Hallo nochmal,


> Hi,
>
> ich mein wenn ich bei
> [mm]\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\red{-sin(x)\cdot{}e^{-x}}+\blue{\integral_{}^{}{cos(x)\cdot{}e^{-x}dx}}[/mm]
> partiell inegriere komm ich auf
> [mm]\blue{\integral_{}^{}{cos(x)\cdot{}e^{-x}dx}}[/mm] = -cos(x) [mm]\blue{e^{-x}}[/mm] -  [mm]\blue{\integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}}[/mm]

Ja, für das hintere Integral, was ist mit dem Teil davor, also dem [mm]\red{-\sin(x)e^{-x}}[/mm] - das musst du doch mitschleppen

Du hast nur den blauen Teil übernommen ...


>  und Steffi auf
>  [mm]\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)\cdot{}e^{-x}-\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}][/mm]
> sieht doch so aus als ob da was eingesetzt wurde

Nein, sie hat nur richtig abgeschrieben ...

>  

Gruß
schachuzipus


Bezug
                                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Di 25.01.2011
Autor: Geddon

Hi,

$ 2 [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)\cdot{}e^{-x} [/mm] $

$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $

$ [mm] \integral_{}^{}{\bruch{sin(x)}{e^{x}} dx} [/mm] = [mm] \bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $

das ist ja ganz schön viel arbeit :/

> Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> habe ich das minus vorgezogen, im 2. Summanden habe ich das
> minus aus dem Integral gezogen,
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>  
> jetzt
>  
> u=cos(x)
>  u'=-sin(x)
>  [mm]v'=e^{-x}[/mm]
>  [mm]v=-e^{-x}[/mm]
>  
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>  
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>  
> jetzt addiere auf beiden Seiten der Gleichung
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>  
> Steffi


Bezug
                                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:33 Di 25.01.2011
Autor: Blech

Hi,

$ 2 [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)\cdot{}e^{-x} [/mm] $

$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $

Hier hast Du ganz nonchalant aus einer Summe ein Produkt gemacht.

Hast Du schon mal darüber nachgedacht, Dir Nachhilfe (Buch oder real life) in 7. Klasse Mathe zu holen? Die partielle Integration kriegst Du hin, aber Du scheiterst dann an so Sachen wie
$a*(-b)=-a*b$,
$-1*(-1)=1$,
[mm] $(-a)-b\neq [/mm] (-a)*(-b)$, oder
[mm] $a=b+c\, [/mm] ;\ c=d\ [mm] \Rightarrow\ [/mm] a=b+d$.

Da sich das viel leichter lernt, als partielle Integration (oder Integration allgemein) ist es doch dämlich, wenn Du Dir vom Kopfrechnen das alles verhageln läßt. Um beim Französischen zu bleiben: Den subjonctif kannst Du perfekt, aber was pouvoir heißt, weißt Du nicht. =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]