www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrieren
Integrieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Stammfunktion, schwer
Status: (Frage) beantwortet Status 
Datum: 18:34 So 15.01.2017
Autor: pc_doctor

Aufgabe
[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx} [/mm]





Hallo,

mir macht die Aufgabe etwas Probleme. Die Stammfunktion zu finden, ist hier nicht so einfach.

Partialbruchzerlegung hat nichts gebracht. Deshalb habe ich Substitution angewandt.

[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx} [/mm]

Habe erstmal die Diskriminante anders aufgeschrieben:

[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{9-(x-3)^{2}}} dx} [/mm]

Sei z = x-3

dx = dz

=>
[mm] \integral_{0}^{6}{\bruch{1}{\wurzel{9-z^{2}}} dz} [/mm]

Ab hier weiß ich nicht mehr weiter. Ich möchte zu [mm] \bruch{1}{\wurzel{1-z^{2}}} [/mm] kommen, denn das ist ein Standardintegral.

Was kann ich hier noch machen oder würdet ihr es anders machen?

Vielen Dank im Voraus.

        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 15.01.2017
Autor: Infinit

Hallo pc-doctor,
Deine Substitution finde ich schon mal prima, denn für diese Art von Integral kenne ich aus alter Zeit die Stammfunktion. Jetzt stellt sich natürlich die Frage, ob man dies weiss oder nicht und insofern ist Deine Frage zum richtigen Weitermachen nicht so einfach zu beantworten. Der Arcussinus taucht hier auf, aber ob dies jemand sieht, der nicht die Lösung kennt, das sei mal dahingestellt.
Es gilt auf jeden Fall
[mm] \int \bruch{dz}{\wurzel{a^2-z^2}} = \arcsin(\bruch{z}{a}) [/mm]
Viele Grüße,
Infinit 

Bezug
                
Bezug
Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 So 15.01.2017
Autor: pc_doctor

Hallo lieber Infinit,

vielen Dank für die Antwort. Die Lösung ist meinem Tutor sicherlich bekannt, da er den Tipp mit dem arcsin gab.

Schönes Wochenende und danke nochmal.

Bezug
                        
Bezug
Integrieren: Zu beachten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 So 15.01.2017
Autor: Diophant

Hallo zusammen,

die Frage der Stammfunktion ist ja geklärt. Allerdings: es handelt sich um ein uneigentliches Integral. Bedeutet: du musst das Integral als Grenzwert schreiben (Konvergenz hin oder her).

Du könntest auch noch die Achsensymmetrie des Integranden zu x=3 nutzen, dann hast du die Grenzwertbetrachtung nur an einer Seite.

Gruß, Diophant

Bezug
        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 15.01.2017
Autor: donquijote


> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx}[/mm]
>  
>
>
>
> Hallo,
>  
> mir macht die Aufgabe etwas Probleme. Die Stammfunktion zu
> finden, ist hier nicht so einfach.
>  
> Partialbruchzerlegung hat nichts gebracht. Deshalb habe ich
> Substitution angewandt.
>
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{x(6-x)}} dx}[/mm]
>  
> Habe erstmal die Diskriminante anders aufgeschrieben:
>  
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{9-(x-3)^{2}}} dx}[/mm]
>  
> Sei z = x-3
>  
> dx = dz
>  
> =>
> [mm]\integral_{0}^{6}{\bruch{1}{\wurzel{9-z^{2}}} dz}[/mm]

Hallo,
der Ansatz ist ok, du musst aber noch berücksichtigen, dass sich durch die Substitution die Integrationsgrenzen ändern.

>  
> Ab hier weiß ich nicht mehr weiter. Ich möchte zu
> [mm]\bruch{1}{\wurzel{1-z^{2}}}[/mm] kommen, denn das ist ein
> Standardintegral.

Darauf kommst du, indem die eine weitere Substitution [mm]t=\frac z3\Leftrightarrow z^2=9t^2[/mm] ausführst (bzw. beide Substitutionen in einem Schritt machst, d. h. [mm]t=\frac{x-3}{3}[/mm]).

>  
> Was kann ich hier noch machen oder würdet ihr es anders
> machen?
>
> Vielen Dank im Voraus.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]