www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Integrierbarkeit
Integrierbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Do 21.05.2009
Autor: Fry

Hallo zusammen,

sei g eine messbare numerische Fkt
angenommen es existiert eine  Fkt h mit [mm] |g|\le [/mm] h, wobei h [mm] \mu-integrierbar. [/mm]
Warum ist dann g dann auch [mm] \mu-integrierbar? [/mm]

Würde mich über eure Hilfe freuen.
Gruß
Fry

        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Sa 23.05.2009
Autor: vivo

Hallo,

das Integral ist monoton, also für g [mm] \le [/mm] h gilt:

[mm]\integral g d \mu \le \integral h d\mu[/mm]

und jetz betrachtest du einfach den positiv und den negativteil:

[mm]\integral g d\mu = \integral g^+ d\mu - \integral g^- d\mu[/mm]

gruß

Bezug
                
Bezug
Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Do 28.05.2009
Autor: Fry

Vielen Dank nochmal für deine Antwort, vivo !
Das hatte ich mir auch gedacht, aber mich hat irritiert, dass bei den Voraussetzungen für diese Formel immer steht, dass f und g [mm] \mu-integrierbar [/mm] sein müssen...was ich ja eigentlich zeigen möchte.(??)

VG
Fry

Bezug
                        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Do 28.05.2009
Autor: pelzig


> Vielen Dank nochmal für deine Antwort, vivo !
>  Das hatte ich mir auch gedacht, aber mich hat irritiert,
> dass bei den Voraussetzungen für diese Formel immer steht,
> dass f und g [mm]\mu-integrierbar[/mm] sein müssen...was ich ja
> eigentlich zeigen möchte.(??)

Das ist richtig, [mm] $\int_Xg\ d\mu$ [/mm] darf man erst hinschreiben, falls g integrierbar ist. Um zu zeigen, dass g integrierbar ist, musst du, da g bereits messbar ist, nur noch zeigen, dass $g_+$ und $g_-$ messbar sind (das ist sicherlich klar) und dass gilt [mm] $\int_X [/mm] g_+\ [mm] d\mu<\infty$ [/mm] und [mm] $\int_X [/mm] g_-\ [mm] d\mu<\infty$ [/mm] (das Integral messbarer, nicht-negativer Funktionen existiert immer, aber es kann auch [mm] $\infty$ [/mm] sein).
Nun gilt aber [mm] $g_+\le g_++g_-=|g|\le [/mm] h$, also [mm] $\int_X [/mm] g_+\ [mm] d\mu\le\int_X [/mm] h\ [mm] d\mu<\infty$, [/mm] denn h ist [mm] $\mu$-integrierbar, [/mm] analog für $g_-$.

Mach dir klar dass bereits [mm] $|g|\le [/mm] h$ [mm] $\mu$-fast-überall [/mm] genügt.

Gruß, Robert

Bezug
                                
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 So 31.05.2009
Autor: Fry

Danke schön ! = )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]