www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integrierbar
Integrierbar < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:54 Mo 09.02.2015
Autor: mariem

Hallo,

wie kann man gucken ob die Funktion [mm] f(x)=\frac{e^{-x^2}}{|x|^a}, [/mm] a>0 integrierbar ist?

        
Bezug
Integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 06:30 Mo 09.02.2015
Autor: fred97


> Hallo,
>
> wie kann man gucken ob die Funktion
> [mm]f(x)=\frac{e^{-x^2}}{|x|^a},[/mm] a>0 integrierbar ist?


Worüber intrgrierbar ?

So ist zum Beispiel f für 0<a<1 integrierbar über (0,1), für a>1 ist f nicht integrierbar über (0,1).


Fred


Bezug
                
Bezug
Integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mo 09.02.2015
Autor: mariem

Muss man vielleicht gucken ob f [mm] \in L^1 [/mm] ?

Also ob f messbar ist und ob [mm] \int [/mm] |f| d [mm] \mu [/mm] < [mm] +\infty [/mm] ist ?

Bezug
                        
Bezug
Integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 Di 10.02.2015
Autor: fred97


> Muss man vielleicht gucken ob f [mm]\in L^1[/mm] ?
>
> Also ob f messbar ist und ob [mm]\int[/mm] |f| d [mm]\mu[/mm] < [mm]+\infty[/mm] ist ?

ÄÄÄÄÄHmmmmm .  Ich bin erstaunt, baff und geblendet ! Ich hab nach dem Integrationsbereich gefragt und bekomme von Dir die obigen klärenden(!) Antworten.

Kläre unten die Fragezeichen:

$f [mm] \in L^1(????????)$ [/mm]

[mm]\int_{?????????}[/mm] |f| d [mm]\mu[/mm] < [mm]+\infty[/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]