www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration von einer eFunktio
Integration von einer eFunktio < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von einer eFunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 12.09.2007
Autor: dayscott

Aufgabe
Gesucht ist die Stammfunktion von [mm] (e^x):(e^{x+1}+1) [/mm]

bei [mm] (e^x):(e^{x}+1) [/mm] weis ich die lösung! die steht in der FS, da der Zähler Ableitung des Nenners ist. aber hier komm ich nicht weiter !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration von einer eFunktio: korrektur
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 12.09.2007
Autor: holwo

hallo,

die ableitung von [mm] e^{x+1}+1 [/mm] ist [mm] e^{x+1}, [/mm] nicht [mm] e^{x} [/mm]

überleg dir noch mal wie du mit potenzenregeln [mm] e^{x+1} [/mm] umformen kannst .. danach kannst du z.b. eine substitution machen

Bezug
                
Bezug
Integration von einer eFunktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Mi 12.09.2007
Autor: dayscott

e^(x+^) ist ja [mm] e*e^x [/mm]

also hab ich das ding mit e:e erweitert ! -  das "obere" e ziehe ich einfach in den zähler und fertig! schon ist mein zähler ableitung des nenners und ich kann die formel aus der FS verwenden. :)

so oder so ähnlich würdest du's doch auch machen oder?

Bezug
                        
Bezug
Integration von einer eFunktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mi 12.09.2007
Autor: holwo

hallo,

ahso, du hast von 2 verschiedenen funktionen geredet ...

stimmt, bei:
[mm] \bruch{e^x}{e^x+1} [/mm] stimmts, der zähler ist ableitung der nenner

bei [mm] \bruch{e^{x}}{e^{x+1}+1} [/mm] geht das nicht so, da kannst du aber [mm] t=e^x [/mm] substituhieren

Bezug
                                
Bezug
Integration von einer eFunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 12.09.2007
Autor: dayscott

hab jetz auf meinem blatt rumprobiert, kapiere aber nicht wie das per substitution gehen soll. ich ersetze [mm] e^x [/mm] durch t und jetzt ?

Bezug
                                        
Bezug
Integration von einer eFunktio: Integral
Status: (Antwort) fertig Status 
Datum: 21:52 Mi 12.09.2007
Autor: barsch

Hi,

du willst [mm] f(x)=\bruch{e^x}{e^{x+1}+1} [/mm] integrieren?!

[mm] \integral{\bruch{e^x}{e^{x+1}+1} dx}=\bruch{1}{e}*\integral{\bruch{e*e^x}{e^{x+1}+1} dx}=\bruch{1}{e}*\integral{\bruch{e^{x+1}}{e^{x+1}+1} dx}=\bruch{1}{e}*ln(e^{x+1}+1) [/mm]

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]