www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration über der x achse?
Integration über der x achse? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über der x achse?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 Di 16.04.2013
Autor: serious2005

Aufgabe
Berechnen Sie den Flächeninhalt der Figur, die von den Parabeln eingeschlossen werden?
[mm] y^2+8x=16; y^2-24x=48 [/mm]

Hey
also meine frage ist warum ich beim integrieren von Parabeln nur die Flächeninhalt über der x-Achse berechne und deshalb meine Ergebnis mal 2 nehmen muss?

gruß serious

        
Bezug
Integration über der x achse?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Di 16.04.2013
Autor: M.Rex

Hallo

> Berechnen Sie den Flächeninhalt der Figur, die von den
> Parabeln eingeschlossen werden?
> [mm]y^2+8x=16; y^2-24x=48[/mm]
> Hey
> also meine frage ist warum ich beim integrieren von
> Parabeln nur die Flächeninhalt über der x-Achse berechne
> und deshalb meine Ergebnis mal 2 nehmen muss?

>

> gruß serious

Die Schnittstelle der beiden Parabeln lieft ja bei x=1.

Außerdem forme die beiden Gleichungen erstmal nach y um.
Aus [mm] y^{2}+8x=16 [/mm] folgt [mm] y=f(x)=\sqrt{16-8x} [/mm]
Aus [mm] y^{2}-24x=48 [/mm] folgt [mm] y=g(x)=\sqrt{48+24x} [/mm]

Mit
[mm] \int\limits_{-2}^{-1}\sqrt{48+24x}dx [/mm] berechnest du die Fläche zwischen der x-Achse und der Parabel g(x) im Intervall [-2;1]
Mit
[mm] \int\limits_{-1}^{2}\sqrt{16-8x}dx [/mm] berechnest du die Fläche zwischen der x-Achse und der Parabel im Intervall [-1;2]

Du willst aber auch die Flächen unterhalb der x-Achse bekommen.

zur Veranschaulichung noch eine Skizze:

[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Integration über der x achse?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Di 16.04.2013
Autor: serious2005

aber warum berechnen wir mim integral nur die fläche oberhalb der x-achse?
könntest du das bitte genauer erklären?

gruß serious

Bezug
                        
Bezug
Integration über der x achse?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Di 16.04.2013
Autor: notinX

Hallo,

> aber warum berechnen wir mim integral nur die fläche
> oberhalb der x-achse?
>  könntest du das bitte genauer erklären?

weil die Wurzel stets positiv ist. Die Gleichungen [mm] $y^2+8x=16$ [/mm] und [mm] $y^2-24x=48 [/mm] $ definieren keine Funktionsgleichungen. Um [mm] $y^2+8x=16$ [/mm] als Funktion darzustellen muss man zwei Funktionen verwenden, mämlich [mm] $f_1(x)=\sqrt{16-8x}$ [/mm] für den Teil oberhalb der x-Achse und [mm] $f_2(x)=-\sqrt{16-8x}$ [/mm] für den Teil unterhalb.

>  
> gruß serious

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]