www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration tot. Differential
Integration tot. Differential < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration tot. Differential: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:56 Di 05.01.2010
Autor: breitmaulfrosch

Aufgabe
[mm] \bruch{dp}{p}= \bruch{\Delta H*dT}{RT²} [/mm]
wird integriert zu:
[mm] ln\bruch{p_{T}}{p_{0}}= \bruch{\Delta H}{R}*(\bruch{1}{T}-\bruch{1}{T}) [/mm]

Hallo!

Bei der obigen Aufgabe handelt es sich um ein Stück der Herleitung der Clausius-Clayperon Gleichung in der Physik. Mein Problem liegt aber in der Integration: Welche Regeln werden angewandt? D.h. : Woher kommt der "ln" und woher die 1/T? Grundsätzlich sind mir die Integrationsregeln schon bekannt (d.h. [mm] \bruch{1}{x} [/mm] ergibt ln x usw. aber wie ist das dann bei einem totalen Differential?
Vielen Dank für die Hilfe!!!
breitmaulfrosch

        
Bezug
Integration tot. Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Di 05.01.2010
Autor: fencheltee


> [mm]\bruch{dp}{p}= \bruch{\Delta H*dT}{RT²}[/mm]
>  wird integriert
> zu:
>  [mm]ln\bruch{p_{T}}{p_{0}}= \bruch{\Delta H}{R}*(\bruch{1}{T}-\bruch{1}{T})[/mm]

hier fehlen die indizes bei den T's, sonst würden die sich ja aufheben!
ich hab zwar vom thema keine ahnung, aber die herleitung und ein blick auf wiki sagt:
[mm] \bruch{dp}{p}= \bruch{\Delta H*dT}{RT^2} [/mm] nun auf beiden seiten ein integralzeichen dazu zaubern mit sinnvollen grenzen (für p nehm ich mal [mm] p_0 [/mm] und [mm] p_T [/mm] und für T T1 und T2):
[mm] \integral_{p_0}^{p_T}{\bruch{dp}{p}}=\integral_{T_1}^{T_2}{\bruch{\Delta H*dT}{RT^2}} [/mm]
das gibt dann
[mm] ln(p_T)-ln(p_0)=-\bruch{\Delta H*dT}{R}*\left(\frac{1}{T_2}-\frac{1}{T_1}\right) [/mm]
das wird dann zu
[mm] ln(\frac{p_T}{p_0})=\bruch{\Delta H*dT}{R}*\left(\frac{1}{T_1}-\frac{1}{T_2}\right) [/mm]

>  
> Hallo!
>  
> Bei der obigen Aufgabe handelt es sich um ein Stück der
> Herleitung der Clausius-Clayperon Gleichung in der Physik.
> Mein Problem liegt aber in der Integration: Welche Regeln
> werden angewandt? D.h. : Woher kommt der "ln" und woher die
> 1/T? Grundsätzlich sind mir die Integrationsregeln schon
> bekannt (d.h. [mm]\bruch{1}{x}[/mm] ergibt ln x usw. aber wie ist
> das dann bei einem totalen Differential?
>  Vielen Dank für die Hilfe!!!
>  breitmaulfrosch

gruß tee

Bezug
                
Bezug
Integration tot. Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Di 05.01.2010
Autor: breitmaulfrosch

Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]