www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integration mittels Residuum
Integration mittels Residuum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mittels Residuum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 08.01.2011
Autor: DoubleHelix

Aufgabe
Man berechne folgende Integrale mit Hilfe des Residuensatzes:
b) [mm] \integral_{0}^{2*\pi}{\bruch{1}{5-3*sin(x)} dx} [/mm]

Hallo,
Ich komme bei der oben genannten Aufgabe leider nicht auf das richtige Ergebnis: [mm] \bruch{\pi}{2} [/mm]

mein Rechengang:
Seite1: http://www.abload.de/img/seite1g90x.jpg
Seite2: http://www.abload.de/img/seite2rxvs.jpg

Bitte um Hilfe.



        
Bezug
Integration mittels Residuum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Sa 08.01.2011
Autor: MathePower

Hallo DoubleHelix,

> Man berechne folgende Integrale mit Hilfe des
> Residuensatzes:
>  b) [mm]\integral_{0}^{2*\pi}{\bruch{1}{5-3*sin(x)} dx}[/mm]
>  
> Hallo,
>  Ich komme bei der oben genannten Aufgabe leider nicht auf
> das richtige Ergebnis: [mm]\bruch{\pi}{2}[/mm]
>  
> mein Rechengang:
>  Seite1: http://www.abload.de/img/seite1g90x.jpg
>  Seite2: http://www.abload.de/img/seite2rxvs.jpg


Es muss heißen:

[mm]}\integral_{}^{}{\bruch{2}{-3*z^{2}+10*i*z+3} \ dz}[/mm]


>  
> Bitte um Hilfe.
>  


Gruss
MathePower  

Bezug
                
Bezug
Integration mittels Residuum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 08.01.2011
Autor: DoubleHelix

Dann ändern sich nur die Vorzeichen. der Wert [mm] \bruch{3}{8}*i [/mm] bleibt aber leider vorhanden womit ich ein Ergebnis von [mm] -\bruch{3}{4}\pi [/mm] erhalten würde :(

Bezug
                        
Bezug
Integration mittels Residuum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 08.01.2011
Autor: MathePower

Hallo DoubleHelix,

> Dann ändern sich nur die Vorzeichen. der Wert
> [mm]\bruch{3}{8}*i[/mm] bleibt aber leider vorhanden womit ich ein
> Ergebnis von [mm]-\bruch{3}{4}\pi[/mm] erhalten würde :(


Nun, Du hast da noch einen Faktor [mm]-\bruch{2}{3}[/mm] vergessen:

[mm]\integral_{}^{}{\bruch{2}{-3\cdot{}z^{2}+10\cdot{}i\cdot{}z+3} \ dz}=-\bruch{2}{3} \integral_{}^{}{\bruch{1}{z^{2}-\bruch{5}{3}\cdot{}i\cdot{}z-1} \ dz} [/mm]


Gruss
MathePower


Bezug
                                
Bezug
Integration mittels Residuum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 08.01.2011
Autor: DoubleHelix

Wohoooooooooo ich habs! Danke Vielmals!
Wieso kann ich zur Berechnung des Residuums eigendlich nicht auch die [mm] Formel:\limes_{z\rightarrow\z_0}(z-{z_0})*f{z} [/mm] verwenden?(mit dieser funktionierts halt nicht ;))

sondern nur die [mm] Formel:\bruch{f{z}}{g'{z}} [/mm] ?

Beide gelten ja für Pole erster Ordnung.

Bezug
                                        
Bezug
Integration mittels Residuum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Sa 08.01.2011
Autor: MathePower

Hallo DoubleHelix,

> Wohoooooooooo ich habs! Danke Vielmals!
>  Wieso kann ich zur Berechnung des Residuums eigendlich
> nicht auch die
> [mm]Formel:\limes_{z\rightarrow\z_0}(z-{z_0})*f{z}[/mm]
> verwenden?(mit dieser funktionierts halt nicht ;))
>  
> sondern nur die [mm]Formel:\bruch{f{z}}{g'{z}}[/mm] ?
>  


Diese Formel geht aus der erstgenannten Formel hervor.

Bei der ersten Formel ist [mm]f\left(z\right)=\bruch{a}{\left(z-z_{1}\right)*\left(z-z_{2}\right)}[/mm]

Während bei der zweiten Formel

[mm]f\left(z\right)=a, \ g\left(z\right)=\left(z-z_{1}\right)*\left(z-z_{2}\right)[/mm]

ist.


> Beide gelten ja für Pole erster Ordnung.



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]