www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration mit Taylorpolynom
Integration mit Taylorpolynom < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mi 16.01.2013
Autor: bobiiii

Aufgabe
Das Integral [mm] \integral_{0}^{1/2}{(1-x+x^2)^{1/4}*dx} [/mm] ist nicht mittels einer Stammfunktion auswertbar. Berechnen Sie einen Näherungswert dafür, indem Sie den Integranten [mm] f(x)=(1-x+x^2)^{1/4} [/mm] durch das quadratische Taylorpolynom mittels der Entwicklungsstelle a=0 ersetzen.

Hallo allerseits!

Kann mir bitte jemand bei diesem Bsp. behilflich sein?

Ich hab so gerechnet:

[mm] f'(x)=\frac{1}{4}*(1-x+x^2)^{-\frac{3}{4}}*(2x-1) [/mm]
[mm] f''(y)=-\frac{3}{16}*(1-x+x^2)^{-\frac{7}{4}}*(2x-1)^2+\frac{1}{2}*(1-x+x^2)^{-\frac{3}{4}} [/mm]

f(0)=1
[mm] f'(0)=\frac{1}{4} [/mm]
[mm] f''(0)=\frac{5}{16} [/mm]

[mm] p_2(x)=\frac{5}{32}*x^2+\frac{1}{4}*x+1 [/mm]

Kann das so stimmen?
Und wenn ja, kann ich aus [mm] p_2(x) [/mm] jetzt einfach die Stammfunktion bilden um das Integral zu berechnen? Weil dann kommt mir $0,5377$ raus.

Gruß,
bobiiii


        
Bezug
Integration mit Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 16.01.2013
Autor: fred97

Es stimmt "fast" alles.

Es ist
$ [mm] f'(0)=-\frac{1}{4} [/mm] $

FRED

Bezug
                
Bezug
Integration mit Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mi 16.01.2013
Autor: bobiiii

Hallo,

Stimmt, dass habe ich übersehen... Danke!
Aus [mm] p_2(x) [/mm] kann ich dann einfach die Stammfunktion bilden?

Gruß,
bobiiii

Bezug
                        
Bezug
Integration mit Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mi 16.01.2013
Autor: fred97


> Hallo,
>  
> Stimmt, dass habe ich übersehen... Danke!
>  Aus [mm]p_2(x)[/mm] kann ich dann einfach die Stammfunktion
> bilden?

Ja, das sollst Du tun, denn die Aufgabe lautet:

"...... indem Sie den Integranten $ [mm] f(x)=(1-x+x^2)^{1/4} [/mm] $ durch das quadratische Taylorpolynom mittels der Entwicklungsstelle a=0 ersetzen. "

FRED

>  
> Gruß,
>  bobiiii


Bezug
                                
Bezug
Integration mit Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Mi 16.01.2013
Autor: bobiiii

Super! Danke für die Hilfe!

Gruß,
bobiiii

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]