www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematica" - Integration komplexer Zahlen
Integration komplexer Zahlen < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration komplexer Zahlen: NIntegrate
Status: (Frage) beantwortet Status 
Datum: 10:51 So 24.03.2013
Autor: freak_no1

Aufgabe
P[j_] := 1/2 +
   [mm] 1/\[Pi] [/mm] NIntegrate[
     Re[(Exp[-I y Log[L]] f[j, y])/(I y)], {y, 0, [mm] \[Infinity]}, [/mm]
     AccuracyGoal -> 5];


7574.46 E^(
  0.212256 - Ln[1.84322]/
   2) (1/2 +
    NIntegrate[
     Re[(Exp[-I y Log[5200]] f$35619[1, y])/(I y)], {y,
      0, [mm] \[Infinity]}, [/mm] AccuracyGoal -> [mm] 5]/\[Pi]) [/mm] -
4611.99 (1/2 +
    NIntegrate[
     Re[(Exp[-I y Log[5200]] f$35619[2, y])/(I y)], {y,
      0, [mm] \[Infinity]}, [/mm] AccuracyGoal -> [mm] 5]/\[Pi]) [/mm]


Hallo,
ich muss im Rahmen einer Implementierung eines Modells am Ende eine Integration des Realteils einer Funktion durchführen. Ich versuche das mithilfe der Funktion NIntegrate[] zu approximieren.
Oben ist der eingegebene Input und unten der Output. Warum kann er mir keine genaue Zahl auswerfen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Di 26.03.2013
Autor: Peter_Pein

Hi,

das Auftauchen von f$35619 deutet darauf hin, dass bei der Definition/Verwendung der Funktion f etwas schief gelaufen ist.

Außerdem taucht bei Dir die Funktion Ln auf. Der Logarithmus zur Basis E ist in Mathematica Log.

Kannst Du die Definition von f nachreichen? Oder soll f unbestimmt bleiben? Dann wäre allerdings NIntegrate fehl am Platz[flatto-leiderned]

Gruß,
Peter


Bezug
                
Bezug
Integration komplexer Zahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:39 Mi 27.03.2013
Autor: freak_no1

Aufgabe
QuantoCallMod[S0_, L_, ry_, T_, t_, [mm] \[Upsilon]0_] [/mm] :=
[mm] Module[{\[Theta]m, St, s1, s2, s3, \[Gamma]1, \[Gamma]2, \[Gamma]3, \[Psi], \[Xi], a, b, c, d, q, w1, w2, w3, \[Gamma]w1, \[Gamma]w2, \[Gamma]w3, \[Xi]w, \[Psi]w, aw, bw, cw, dw, f, P}, [/mm]
  [mm] \[Theta]m [/mm] = [mm] \[Theta] [/mm] - [mm] (\[Rho]vfx \[Sigma]fx \[Delta])/\[Kappa]; [/mm]
  St = S0 Exp[(rx - div) (T - t)];
  s1 = -(1/2) (((2 [mm] \[Kappa] \[Rho]sv)/ \[Delta]) [/mm] - [mm] \[Rho]sv); [/mm]
  s2 = [mm] (\[Kappa] \[Theta]m \[Rho]sv)/ \[Delta] [/mm] + [mm] \[Rho]sfx \[Sigma]fx [/mm] ;
  s3 = [mm] \[Rho]sv/ [/mm] (2 [mm] \[Delta]) [/mm] ;
  [mm] \[Gamma]1 [/mm] = Sqrt[2 [mm] \[Delta]^2 [/mm] s1 + [mm] \[Kappa]^2]; [/mm]
  [mm] \[Gamma]2 [/mm] = [mm] (1/\[Gamma]1) (\[Kappa] [/mm] - 2 [mm] \[Delta]^2 [/mm] s3);
  [mm] \[Gamma]3 [/mm] = [mm] \[Kappa]^2 \[Theta] [/mm] - s2 [mm] \[Delta]^2; [/mm]
  [mm] \[Psi] [/mm] = [mm] Sinh[\[Gamma]1 [/mm] (T - t)] + [mm] \[Gamma]2 Cosh[\[Gamma]1 [/mm] (T - t)];
  [mm] \[Xi] [/mm] = [mm] Cosh[\[Gamma]1 [/mm] (T - t)] + [mm] \[Gamma]2 Sinh[\[Gamma]1 [/mm] (T - t)];
  a = [mm] (\[Kappa]/\[Delta]^2) [/mm] - [mm] (\[Gamma]1/\[Delta]^2) \[Psi]/\[Xi]; [/mm]
  b = [mm] (\[Kappa] \[Theta] \[Gamma]1 [/mm] - [mm] \[Gamma]2 \[Gamma]3 [/mm] + [mm] \[Gamma]3 \ [/mm]
[mm] \[Psi]/(\[Delta]^2 \[Gamma]1 \[Xi])) [/mm] - [mm] (\[Kappa] \[Theta])/\[Delta]^2; [/mm]
  c = -(1/2) [mm] Ln[\[Xi]] [/mm] + [mm] (\[Kappa]/2) [/mm] (T -
       t) + [mm] ((\[Kappa]^2 \[Theta]^2 \[Gamma]1^2 [/mm] - [mm] \[Gamma]3^2)/(2 \ [/mm]
[mm] \[Delta]^2 \[Gamma]1^3)) (Sinh[\[Gamma]1 [/mm] (T -
            [mm] t)]/\[Xi] [/mm] - [mm] \[Gamma]1 [/mm] (T -
          t)) + [mm] (((\[Kappa] \[Theta] \[Gamma]1 [/mm] - [mm] \[Gamma]2 \[Gamma]3) \ [/mm]
[mm] \[Gamma]3)/(\[Delta]^2 \[Gamma]1^3)) (((Cosh[\[Gamma]1 [/mm] (T - t)] -
           1) - [mm] 1)/\[Xi]); [/mm]
  d = Exp[(1/2) a [mm] \[Upsilon]0^2 [/mm] + b [mm] \[Upsilon]0 [/mm] + c];
  q = St Exp[(rx - div) (T -
         t) - [mm] (\[Rho]sv/(2 \[Delta])) (\[Upsilon]0^2 [/mm] + [mm] \[Delta]^2 [/mm] (T -
             t))] d;
  w1[j_, y_] :=
   Piecewise[{{-(1 + I y)/
        2 ((1 + I y) (1 - [mm] \[Rho]sv^2) [/mm] -
         1 + ((2 [mm] \[Kappa] \[Rho]sv)/\[Delta])), [/mm]
      j == 1}, [mm] {y^2/2 (1 - \[Rho]sv^2) + (I y)/ 2 (1 - ((2 \[Kappa] \[Rho]sv)/\[Delta])), j == 2}}]; [/mm]
  w2[j_, y_] :=
   Piecewise[{{(1 +
         I y) [mm] (((\[Kappa] \[Theta]m \[Rho]sv)/\[Delta]) [/mm] + [mm] \[Rho]sfx \ [/mm]
[mm] \[Sigma]fx), [/mm] j == 1}, {
      I y [mm] (((\[Kappa] \[Theta]m \[Rho]sv)/\[Delta]) [/mm] + [mm] \[Rho]sfx \ [/mm]
[mm] \[Sigma]fx), [/mm] j == 2}}];
  w3[j_, y_] :=
   Piecewise[{{(1 + I y) [mm] (\[Rho]sv/(2 \[Delta])), [/mm]
      j == 1}, {I y [mm] (\[Rho]sv/(2 \[Delta])), [/mm] j == 2}}];
  [mm] \[Gamma]w1[j_, [/mm] y_] := Sqrt[ 2 [mm] \[Delta]^2 [/mm] w1[j, y] + [mm] \[Kappa]^2]; [/mm]
  [mm] \[Gamma]w2[j_, [/mm] y_] :=
   [mm] 1/\[Gamma]w1[j, [/mm] y] [mm] (\[Kappa] [/mm] - 2 [mm] \[Delta]^2 [/mm] w3[j, y]);
  [mm] \[Gamma]w3[j_, [/mm] y_] := [mm] \[Kappa]^2 \[Theta] [/mm] - w2[j, y] [mm] \[Delta]^2; [/mm]
  [mm] \[Psi]w[j_, [/mm] y_] :=
   [mm] Sinh[\[Gamma]w1[j, [/mm] y] (T - t)] + [mm] \[Gamma]w2[j, [/mm]
      y] [mm] Cosh[\[Gamma]w1[j, [/mm] y] (T - t)];
  [mm] \[Xi]w[j_, [/mm] y_] :=
   [mm] Cosh[\[Gamma]w1[j, [/mm] y] (T - t)] + [mm] \[Gamma]w2[j, [/mm]
      y] [mm] Sinh[\[Gamma]w1[j, [/mm] y] (T - t)];
  aw[j_, y_] := [mm] (\[Kappa]/\[Delta]^2) [/mm] - [mm] (\[Gamma]w1[j, [/mm]
        [mm] y]/\[Delta]^2) \[Psi]w[j, y]/\[Xi]w[j, [/mm] y];
  bw[j_, y_] := [mm] (\[Kappa] \[Theta] \[Gamma]w1[j, [/mm] y] - [mm] \[Gamma]w2[j, [/mm]
         y] [mm] \[Gamma]w3[j, [/mm] y] + [mm] \[Gamma]w3[j, [/mm] y] [mm] \[Psi]w[j, [/mm]
         [mm] y])/(\[Delta]^2 \[Gamma]w1[j, [/mm] y] [mm] \[Xi]w[j, [/mm]
        y]) - [mm] (\[Kappa] \[Theta])/\[Delta]^2; [/mm]
  cw[j_, y_] := -(1/2) [mm] Ln[\[Xi]w[j, [/mm] y]] + [mm] (\[Kappa]/2) [/mm] (T -
       t) + [mm] ((\[Kappa]^2 \[Theta]^2 \[Gamma]w1[j, y]^2 [/mm] - [mm] \[Gamma]w3[j, [/mm]
            [mm] y]^2)/(2 \[Delta]^2 \[Gamma]w1[j, y]^3)) (Sinh[\[Gamma]w1[ [/mm]
           j, y] (T - [mm] t)]/\[Xi]w[j, [/mm] y] - [mm] \[Gamma]w1[j, [/mm]
         y] (T - t)) + [mm] (((\[Kappa] \[Theta] \[Gamma]w1[j, [/mm]
             y] - [mm] \[Gamma]w2[j, [/mm] y] [mm] \[Gamma]w3[j, [/mm] y]) [mm] \[Gamma]w3[j, [/mm]
          [mm] y])/(\[Delta]^2 \[Gamma]w1[j, [/mm]
           [mm] y]^3)) (((Cosh[\[Gamma]w1 [/mm] (T - t)] - 1) - [mm] 1)/\[Xi]w[j, [/mm] y]);
  dw[j_, y_] :=
   Exp[(1/2) aw[j, y] [mm] \[Upsilon]0^2 [/mm] + bw[j, y] [mm] \[Upsilon]0 [/mm] + cw[j, y]];
  f[j_, y_] :=
   Piecewise[{{(Exp[(1 + I y) ((rx - div) (T - t) + Ln[St]) - (1 +
              I y) [mm] ((\[Rho]sv)/ [/mm]
               2 [mm] \[Delta]) (\[Upsilon]0^2 [/mm] + [mm] \[Delta]^2 [/mm] (T - t))]/
         q) dw[j, y],
      j == 1}, {Exp[((rx - div) (T - t) + Ln[St]) I y -
         I y [mm] ((\[Rho]sv)/ [/mm]
             2 [mm] \[Delta]) (\[Upsilon]0^2 [/mm] + [mm] \[Delta]^2 [/mm] (T - t))] dw[j,
        y], j == 2}}];
  P[j_] :=
   1/2 + [mm] 1/\[Pi] [/mm] NIntegrate[
      Re[(Exp[-I y Ln[L]] f[j, y])/(I y)], {y, 0, [mm] \[Infinity]}, [/mm]
      AccuracyGoal -> 5];
  q Exp[-ry (T - t)] P[1] - L Exp[-ry (T - t)] P[2

also mein betreuer meinte, dass das problem evtl. am NIntegrate hängt. Ich solle versuchen das mithilfe des gauss-laguerre verfahren zu lösen, weiß aber noch nicht wie ich das implementiert kriege.

Bezug
                        
Bezug
Integration komplexer Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Fr 29.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]