www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration im IR^n
Integration im IR^n < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration im IR^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 03.11.2007
Autor: Luuly

hallo alle zusammen,

Ich sitze gerade an einer Aufgabe und weiß nicht, wie ich sie lösen kann.


K sei der Teil der Kugel [mm] (x-a)^{2} +y^{2} [/mm] + [mm] z^{2}\le a^{2}, [/mm] der durch die Zylinderfläche [mm] (x-a)^{2} [/mm] + [mm] y^{2}\le b^{2} [/mm] < [mm] a^{2} [/mm] herausgeschnitten wird.
Berechne das Volumen von K durch geeignete Koordinatenwahl.

Ich werde über einen Tipp sehr freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

LG

Luuly

        
Bezug
Integration im IR^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Sa 03.11.2007
Autor: rainerS

Hallo Luuly!

> K sei der Teil der Kugel [mm](x-a)^{2} +y^{2}[/mm] + [mm]z^{2}<= a^{2},[/mm]
> der durch die Zylinderfläche [mm](x-9)^{2}[/mm] + [mm]y^{2}<= b^{2} (a^{2} >b^{2})[/mm]
> herausgeschnitten wird.

Steht da wirklich [mm](x-9)^{2} + y^{2}<= b^{2} (a^{2} >b^{2})[/mm] ? Oder [mm](x-a)^{2} + y^{2}<= b^{2} (a^{2} >b^{2})[/mm]. (Geht die Zylinderachse durch den Kugelmittelpunkt?)

Mal dir doch mal den Schnit mit der xz-Ebene auf!

Ich wundere mich nur, dass du laut deinem Profil Dipl-Math. bist ;-)

Viele Grüße
   Rainer

Bezug
                
Bezug
Integration im IR^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Sa 03.11.2007
Autor: Luuly

oh sorry, ich habe mich vertippt. Die Aufgabenstellung habe ich schon geändert.

Bei meiner Profil habe ich den Titel falsch ausgewählt. Ich bin noch Student im Grundstudium und studiere Mathe auf Diplom.

LG
Luuly

Bezug
        
Bezug
Integration im IR^n: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Sa 03.11.2007
Autor: rainerS

Hallo!

> K sei der Teil der Kugel [mm](x-a)^{2} +y^{2}[/mm] + [mm]z^{2}\le a^{2},[/mm]
> der durch die Zylinderfläche [mm](x-a)^{2}[/mm] + [mm]y^{2}\le b^{2}[/mm] <
> [mm]a^{2}[/mm] herausgeschnitten wird.
>  Berechne das Volumen von K durch geeignete
> Koordinatenwahl.

Erstmal ein Bild: gezeigt ist der Schnitt in der xz-Ebene für a=4 und b=2:
[Dateianhang nicht öffentlich]
Die beiden senkrechten Geraden sollen den Schnitt mit dem Zylinder darstellen.

Als Erstes bietet es sich an, das Koordinatensystem so zu verschieben, dass der Kugelmittelpunkt im Ursprung liegt, also in x-Richtung um a. Das Volumen ändert sich dadurch ja nicht. In diesen neuen Koordinaten lauten Gleichungen für Kugel und Zylinder:
[mm]x^2+y^2+z^2 \le a^2[/mm] und [mm]x^2+y^2\le b^2[/mm].
Beide sind rotationssymmetrisch um die z-Achse, also auch der ausgeschnittene Teil. Das sieht dann so aus:
[Dateianhang nicht öffentlich]
Wichtig ist der Punkt E: der Abstand von der z-Achse ist ja b, die Höhe h über der xy-Ebene durch [mm]h^2+b^2=a^2[/mm] gegeben.

Wegen der Rotationssymmetrie bieten sich Polarkoordinaten an.

Kommst du alleine weiter?

  Viele Grüße
    Rainer




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Integration im IR^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:45 So 04.11.2007
Autor: Luuly

Was ich berechnen soll, ist das Volumen von einem Zylinder mit zwei Deckeln. Aber mir ist nicht klar, wie die Funktion für den Schnittkörper aussieht.


LG

Luuly

Bezug
                        
Bezug
Integration im IR^n: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 So 04.11.2007
Autor: rainerS

Hallo Luuly!

> Was ich berechnen soll, ist das Volumen von einem Zylinder
> mit zwei Deckeln.

Richtig.

> Aber mir ist nicht klar, wie die Funktion
> für den Schnittkörper aussieht.

Das Volumen ist rotationssymmetrisch bezüglich der z-Achse.

Aus der Zeichnung siehst du doch wie hoch der Zylinder ist. Wenn h den Abstand des Punktes E von der xy-Ebene bezeichnet, dann ist doch

[mm]0\le x^2+y^2 \le\begin{cases} b^2 & \text{ für den Zylinder: $-h\le z\le h$} \\ a^2-z^2 & \text{ für die Deckel: $h<|z|\le a$} \end{cases}[/mm].

Am Besten, du transformierst in Zylinderkoordinaten und zerlegst das Volumenintegral in die passenden Teile.

Viele Grüße
   Rainer




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]