www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration im 3-dim. Raum
Integration im 3-dim. Raum < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration im 3-dim. Raum: Anpassen des Koordinatensystem
Status: (Frage) beantwortet Status 
Datum: 22:33 Mo 05.05.2014
Autor: stromberg09

Aufgabe
Berechnen sie folgendes Integral:

[mm] \integral{\bruch{1}{(2\pi)^{3}}e^{i\vec{k}\vec{r}}\bruch{4\pi}{k^{2}} d^{3}k} [/mm]

Ich habe hier zunächst eine Transformation in Kugelkoordinaten vorgenommen:

Mit
[mm] k_{x}=k*sin(\alpha)*cos(\beta) [/mm]
[mm] k_{y}=k*sin(\alpha)*sin(\beta) [/mm]
[mm] k_{z}=k*cos(\alpha) [/mm]

[mm] x=r*sin(\alpha')*cos(\beta') [/mm]
[mm] y=r*sin(\alpha')*sin(\beta') [/mm]
[mm] z=r*cos(\alpha') [/mm]
erhalte ich dann:


[mm] \integral_{0}^{\infty}\integral_{0}^{\pi}\integral_{0}^{2\pi}{\bruch{1}{(2\pi)^{3}}e^{ikr(sin(\alpha)*cos(\beta)sin(\alpha')*cos(\beta')+sin(\alpha)*sin(\beta)sin(\alpha')*sin(\beta')+cos(\alpha)cos(\alpha'))}\bruch{4\pi}{k^{2}} k^{2} sin(\alpha) d\beta d\alpha dk} [/mm]

Umformen:

[mm] \integral_{0}^{\infty}\integral_{0}^{\pi}\integral_{0}^{2\pi}{\bruch{4\pi}{(2\pi)^{3}}e^{ikr(sin(\alpha)*sin(\alpha')(cos(\beta)*cos(\beta')+sin(\beta)*sin(\beta'))+cos(\alpha)cos(\alpha'))} sin(\alpha) d\beta d\alpha dk} [/mm]

An dieser Stelle wurde mir gesagt, dass man das k-Koordinatensystem so legen soll, dass [mm] k_{x} [/mm] auf die z-Achse des Ortskoordinatensystems fällt.

Kann mir jemand an dieser Stelle erklären, wie diese Transformation funktioniert. Ich komme irgendwie nicht dahinter, obwohl ich den Eindruck habe, dass es nicht allzu schwer sein sollte :-( .

Schon mal vielen Dank im voraus.

        
Bezug
Integration im 3-dim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Di 06.05.2014
Autor: fred97

Bei Deinen viele k's und r's in ganz unterschiedlichen Bedeutungen wird mir schwindelig !

Einmal schreibst Du [mm] e^{i\vec{k}\vec{r}}. [/mm] Die Pfeile riechen nach Vektoren.

Weiter unten schriebst Du [mm] e^{ikr}, [/mm] ohne Pfeile !

Was ist r ? Was ist k ? Was ist [mm] \vec{k} [/mm] ?  Was ist [mm] \vec{r} [/mm]

Unterm Integral steht der Faktor [mm] \bruch{4\pi}{k^{2}}. [/mm] Ist k [mm] \in \IR [/mm] ?


Dann schreibst Du $d^3k.$ Welche bedeutung hat hier k ?

Noch eine Frage: worüber soll denn eigentlich integriert werden ?

[mm] \integral_{????}{\bruch{1}{(2\pi)^{3}}e^{i\vec{k}\vec{r}}\bruch{4\pi}{k^{2}} d^{3}k} [/mm]

FRED

Bezug
                
Bezug
Integration im 3-dim. Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Di 06.05.2014
Autor: stromberg09

Hallo Fred,

leider kann ich für die unterschiedlichen k und r auch nichts dafür, da so uns die Aufgabe gestellt wurde. Ich habe lediglich die Aufgabenstellung 1 zu 1 wiedergegeben.
Für k müsste k [mm] \in \IR [/mm] gelten. (War aber leider auch nicht angegeben). [mm] d^{3}k [/mm] stellt das Volumenintegral dar, sprich [mm] d^{3}k=dk_{x}dk_{y}dk_{z}. [/mm] Der Vektor k ist ein dreidimensionaler Vektor mit Werten für [mm] dk_{x}dk_{y}dk_{z}. [/mm] Gleiches gilt für r. Weiter unten wird dementsprechend k und r ohne Vektor geschrieben, da diese aus der Transformation in Kugelkoordinaten stammen.
Die Integration soll über den gesamten Raum stattfinden.

Grüße
Daniel

Bezug
        
Bezug
Integration im 3-dim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Di 06.05.2014
Autor: Event_Horizon

Hallo!

Man müßte noch wissen, was [mm] \vec{k} [/mm] und [mm] \vec{r} [/mm] denn nun darstellen sollen, bzw., wie ihre Ortsabhängigkeit aussieht.

Wenn [mm] \vec{k} [/mm] im gesamten Raum konstant ist, liegt es nahe, ein Koordinatensystem zu wählen, in welchem [mm] \vec{k} [/mm] parallel zu einer Achse ist, z.B. [mm] \vec{k}=k_0*\vektor{0\\0\\1} [/mm]   (Ich schreib das mal so, sonst kommt man noch durcheinander.)
Damit schmilzt dein Integral schonmal deutlich zusammen, und eine Integration gelingt schon in karth. Koordinaten.

Dabei wird dir das Integral allerdings um die Ohren fliegen. Daher muß was anderes dahinter stecken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]