www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Integration
Integration < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mo 20.05.2013
Autor: AntonK

Aufgabe
[mm] \integral_{-i}^{i}{z dz} [/mm]

Hallo Leute,

in meinem Skript steht:

[mm] \integral_{a}^{b}{f(z) dz}=\integral_{a}^{b}{Re(f(z)) dz}+\integral_{a}^{b}{Im(f(z)) dz} [/mm]

Ich bin nun etwas verwirrt, ich schreibe z = a + ib.

1) [mm] \integral_{-i}^{i}{(a+ib) dz}=\integral_{-i}^{i}{a dz}+i\integral_{-i}^{i}{b dz} [/mm]

2) [mm] \integral_{-i}^{i}{(a+ib) dz}=\integral_{-i}^{i}{a da}+i\integral_{-i}^{i}{b db} [/mm]

Welche Variante stimmt? Also muss ich wirklich dann nach a bzw. b integrieren?

Danke schonmal!

        
Bezug
Integration: Analytisch
Status: (Antwort) fertig Status 
Datum: 15:20 Mo 20.05.2013
Autor: Infinit

Hallo Anton,
Deine Funktion f(z) = z ist eine analytische Funktion und insofern hängt der Wert des Kurvenintegrals nur vom End- und Anfangspunkt der Kurve ab. Du kannst also f(z) = z formal wie im Reellen integrieren und dann die Grenzen einsetzen. 
Viele Grüße,
Infinit

Bezug
                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Mo 20.05.2013
Autor: fred97


> Hallo Anton,
>  Deine Funktion f(z) = z ist eine analytische Funktion und
> insofern hängt der Wert des Kurvenintegrals nur vom End-
> und Anfangspunkt der Kurve ab.

Hallo Infinit,

i.a. reicht analytisch nicht. Damit das Kurvenintegrals nur vom End-
und Anfangspunkt der Kurve abhängt, muß die zu integrierende Funktion auch noch eine Stammfunktion besitzen.

Bei f(z)=z ist das der Fall, aber g(z)=1/z besitzt auf [mm] \IC [/mm] \ { 0 } keine Stammfunktion . Es ist z.B.

[mm] \integral_{|z|=1}^{}{g(z) dz} \ne [/mm] 0.

FRED


> Du kannst also f(z) = z
> formal wie im Reellen integrieren und dann die Grenzen
> einsetzen. 
>  Viele Grüße,
>  Infinit


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mo 20.05.2013
Autor: AntonK

Gut, das sehe ich irgendwo ein, aber jetzt mal rein formal, was stimmt?

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Mo 20.05.2013
Autor: Infinit

Wenn Du es aufteilen willst, dann stimmt Version 2. Es geht aber auch direkt in z.
VG,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]